scholarly journals Analysis of the Response of a Static Reactive Power Compensator to Instability and Failure in Electrical grids

2021 ◽  
Vol 2065 (1) ◽  
pp. 012023
Author(s):  
Víctor Manuel Maridueña ◽  
Edwin Arnaldo Castro ◽  
Nelson Layedra

Abstract The reliability of electrical power systems has led to the implementation of new equipment with reliable technology to solve transient failures, in recent decades flexible AC transmission systems (FACTS) have been implemented in power grids, resulting in high levels of stability and control. One of the elements used is static VAR compensators (SVC), however there is very little information about the dynamic response of the device to network instability and electrical failures, for which Simulink analyses the response of the SVC. The device consists of a 47.1 MVar reactive power compensator and a 97.6 MVar inductive reactivator compensator, implemented in a three-phase 500 kV system. The results indicate the effectiveness of response against network instability while maintaining the stable voltage of the network, but against electrical failures the type and time of failure must be considered. In the case of phase-phase faults, the response of the SVC is limited with drops of 0.52 pu.

2016 ◽  
Vol 6 (1) ◽  
pp. 895-905
Author(s):  
R. Jadeja ◽  
S. Patel ◽  
S. Chauhan

This paper investigates different types of Flexible AC transmission System (FACTS) controllers with focus on various operational and control aspects of static synchronous compensators (STATCOM) to different performance characteristics like power transfer capability, voltage regulation, reactive power management, stability limits, power factor improvement etc. In addition, various features related to STATCOM like converter topologies, reference compensating signal generation schemes, controllers, and generation of switching signals are reviewed.


Author(s):  
Ankit Kumar Singh

it's proposed to use highly complex grid controllers to include power grids into one super- grid that may acquire large penetration of inexhaustible powers, without compromising power quality, active and reactive power flow, and voltage and facility stability. The super-grid constructed with ultra- high voltage DC (UHVDC) and flexible ac transmission systems (FACTS) together with dedicated ac and dc interconnectors with intelligent systems applications to supply a wise Integrated Super-Grid. DC interconnectors will segment the whole continent's power systems into five large asynchronous segments (regions). Noncontemporary divisions will prevent ac fault propagation between sections while allowing power exchange between different parts of the super-grid, with minimum difficulty for grid code unification or harmonization of regulatory regimes across the mainland as each segment maintains its accord . a sensible Integrated wattage Super-Grid powered by these technologies is critical in supporting sustained economic process and development; established on the keystone of renewable energy and utilizing over 600GW immeasurable potential of Africa's clean and renewable hydroelectric, photovoltaic and alternative energy as a little of a extensive energy comingle of traditional and complementary energy resources.


Author(s):  
Laura Collazo Solar ◽  
Angel A. Costa Montiel ◽  
Miriam Vilaragut Llanes ◽  
Vladimir Sousa Santos

In this paper, a new steady-state model of a three-phase asynchronous motor is proposed to be used in the studies of electrical power systems. The model allows for obtaining the response of the demand for active and reactive power as a function of voltage and frequency. The contribution of the model is the integration of the characteristics of the mechanical load that can drive motors, either constant or variable load. The model was evaluated on a 2500 kW and 6000 V motor, for the two types of mechanical load, in a wide range of voltage and frequency, as well as four load factors. As a result of the evaluation, it was possible to verify that, for the nominal frequency and voltage variation, the type of load does not influence the behavior of the powers and that the reactive power is very sensitive to the voltage variation. In the nominal voltage and frequency deviation scenario, it was found that the type of load influences the behavior of the active and reactive power, especially in the variable load. The results demonstrate the importance of considering the model proposed in the simulation software of electrical power systems.


Author(s):  
A. G. Fishov ◽  
I. S. Murashkina ◽  
A. I. Marchenko ◽  
E. Erdenebat ◽  
Y. S. Ivkin

One of the key aspects in the development of power engineering all over the world is the use of distributed small-scale generation. This is both based on fuel carbon resources with a synchronized connection between sources when they are connected to the electric power grids and renewable energy sources operated in the electrical grid via frequency converters (electronic generation). The latter brings an inevitable broad use of inverters in available AC power systems. The objectives of this paper are numerous. First is the desire to study the effect of electronic generation on modes and stability of current electrical grids and electrical power systems. Another objective is to establish requirements for electronic generation control that lets us minimize actions on relay protection coordination and automation upon the integration of electronic generation in power grids. A final objective is to increase the reliability of general electrical modes. This article shows the outcomes of the study on the statical aperiodic stability of the electrical power system upon the integration of electronic generation, requirements for its statical characteristics, and the control when operated within the electrical power system.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4667 ◽  
Author(s):  
Adriana Mar ◽  
Pedro Pereira ◽  
João F. Martins

One of the most critical infrastructures in the world is electrical power grids (EPGs). New threats affecting EPGs, and their different consequences, are analyzed in this survey along with different approaches that can be taken to prevent or minimize those consequences, thus improving EPG resilience. The necessity for electrical power systems to become resilient to such events is becoming compelling; indeed, it is important to understand the origins and consequences of faults. This survey provides an analysis of different types of faults and their respective causes, showing which ones are more reported in the literature. As a result of the analysis performed, it was possible to identify four clusters concerning mitigation approaches, as well as to correlate them with the four different states of the electrical power system resilience curve.


The term “Smart grid” is used for the modernized electrical power system grids. Power grids as we know it is a collection of generation units and load centers that are connected through power lines. Smart grids are a newer version of power grids which basically is the digitalization of the infrastructure with the involvement of smart meters, sensors and different types of IED’s (Intelligent Electronic Devices). As the grids become smart they become vulnerable to attacks over the internet i.e., cyber attacks


Sign in / Sign up

Export Citation Format

Share Document