scholarly journals An Improved Convolutional Neural Network for Text Classification

2021 ◽  
Vol 2066 (1) ◽  
pp. 012091
Author(s):  
Xiaojing Fan ◽  
A Runa ◽  
Zhili Pei ◽  
Mingyang Jiang

Abstract This paper studies the text classification based on deep learning. Aiming at the problem of over fitting and training time consuming of CNN text classification model, a SDCNN model is constructed based on sparse dropout convolutional neural network. Experimental results show that, compared with CNN, SDCNN further improves the classification performance of the model, and its classification accuracy and precision can reach 98.96% and 85.61%, respectively, indicating that SDCNN has more advantages in text classification problems.

2019 ◽  
Vol 14 (1) ◽  
pp. 124-134 ◽  
Author(s):  
Shuai Zhang ◽  
Yong Chen ◽  
Xiaoling Huang ◽  
Yishuai Cai

Online feedback is an effective way of communication between government departments and citizens. However, the daily high number of public feedbacks has increased the burden on government administrators. The deep learning method is good at automatically analyzing and extracting deep features of data, and then improving the accuracy of classification prediction. In this study, we aim to use the text classification model to achieve the automatic classification of public feedbacks to reduce the work pressure of administrator. In particular, a convolutional neural network model combined with word embedding and optimized by differential evolution algorithm is adopted. At the same time, we compared it with seven common text classification models, and the results show that the model we explored has good classification performance under different evaluation metrics, including accuracy, precision, recall, and F1-score.


Jurnal Varian ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 95-102
Author(s):  
I Ketut Putu Suniantara ◽  
Gede Suwardika ◽  
Siti Soraya

Supervised learning in Machine learning is used to overcome classification problems with the Artificial Neural Network (ANN) approach. ANN has a few weaknesses in the operation and training process if the amount of data is large, resulting in poor classification accuracy. The results of the classification accuracy of Artificial Neural Networks will be better by using boosting. This study aims to develop a Boosting Feedforward Neural Network (FANN) classification model that can be implemented and used as a form of classification model that results in better accuracy, especially in the classification of the inaccuracy of Terbuka University students. The results showed the level of accuracy produced by the Feedforward Neural Network (FFNN) method had an accuracy rate of 72.93%. The application of boosting on FFN produces the best level of accuracy which is 74.44% at 500 iterations


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Jianghui Wen ◽  
Yeshu Liu ◽  
Yu Shi ◽  
Haoran Huang ◽  
Bing Deng ◽  
...  

Abstract Background Long-chain non-coding RNA (lncRNA) is closely related to many biological activities. Since its sequence structure is similar to that of messenger RNA (mRNA), it is difficult to distinguish between the two based only on sequence biometrics. Therefore, it is particularly important to construct a model that can effectively identify lncRNA and mRNA. Results First, the difference in the k-mer frequency distribution between lncRNA and mRNA sequences is considered in this paper, and they are transformed into the k-mer frequency matrix. Moreover, k-mers with more species are screened by relative entropy. The classification model of the lncRNA and mRNA sequences is then proposed by inputting the k-mer frequency matrix and training the convolutional neural network. Finally, the optimal k-mer combination of the classification model is determined and compared with other machine learning methods in humans, mice and chickens. The results indicate that the proposed model has the highest classification accuracy. Furthermore, the recognition ability of this model is verified to a single sequence. Conclusion We established a classification model for lncRNA and mRNA based on k-mers and the convolutional neural network. The classification accuracy of the model with 1-mers, 2-mers and 3-mers was the highest, with an accuracy of 0.9872 in humans, 0.8797 in mice and 0.9963 in chickens, which is better than those of the random forest, logistic regression, decision tree and support vector machine.


2021 ◽  
Vol 14 ◽  
Author(s):  
Kunqiang Qing ◽  
Ruisen Huang ◽  
Keum-Shik Hong

This study decodes consumers' preference levels using a convolutional neural network (CNN) in neuromarketing. The classification accuracy in neuromarketing is a critical factor in evaluating the intentions of the consumers. Functional near-infrared spectroscopy (fNIRS) is utilized as a neuroimaging modality to measure the cerebral hemodynamic responses. In this study, a specific decoding structure, called CNN-based fNIRS-data analysis, was designed to achieve a high classification accuracy. Compared to other methods, the automated characteristics, constant training of the dataset, and learning efficiency of the proposed method are the main advantages. The experimental procedure required eight healthy participants (four female and four male) to view commercial advertisement videos of different durations (15, 30, and 60 s). The cerebral hemodynamic responses of the participants were measured. To compare the preference classification performances, CNN was utilized to extract the most common features, including the mean, peak, variance, kurtosis, and skewness. Considering three video durations, the average classification accuracies of 15, 30, and 60 s videos were 84.3, 87.9, and 86.4%, respectively. Among them, the classification accuracy of 87.9% for 30 s videos was the highest. The average classification accuracies of three preferences in females and males were 86.2 and 86.3%, respectively, showing no difference in each group. By comparing the classification performances in three different combinations (like vs. so-so, like vs. dislike, and so-so vs. dislike) between two groups, male participants were observed to have targeted preferences for commercial advertising, and the classification performance 88.4% between “like” vs. “dislike” out of three categories was the highest. Finally, pairwise classification performance are shown as follows: For female, 86.1% (like vs. so-so), 87.4% (like vs. dislike), 85.2% (so-so vs. dislike), and for male 85.7, 88.4, 85.1%, respectively.


2021 ◽  
Vol 5 (3) ◽  
pp. 584-593
Author(s):  
Naufal Hilmiaji ◽  
Kemas Muslim Lhaksmana ◽  
Mahendra Dwifebri Purbolaksono

especially with the advancement of deep learning methods for text classification. Despite some effort to identify emotion on Indonesian tweets, its performance evaluation results have not achieved acceptable numbers. To solve this problem, this paper implements a classification model using a convolutional neural network (CNN), which has demonstrated expected performance in text classification. To easily compare with the previous research, this classification is performed on the same dataset, which consists of 4,403 tweets in Indonesian that were labeled using five different emotion classes: anger, fear, joy, love, and sadness. The performance evaluation results achieve the precision, recall, and F1-score at respectively 90.1%, 90.3%, and 90.2%, while the highest accuracy achieves 89.8%. These results outperform previous research that classifies the same classification on the same dataset.


2020 ◽  
Vol 12 (11) ◽  
pp. 1780 ◽  
Author(s):  
Yao Liu ◽  
Lianru Gao ◽  
Chenchao Xiao ◽  
Ying Qu ◽  
Ke Zheng ◽  
...  

Convolutional neural networks (CNNs) have been widely applied in hyperspectral imagery (HSI) classification. However, their classification performance might be limited by the scarcity of labeled data to be used for training and validation. In this paper, we propose a novel lightweight shuffled group convolutional neural network (abbreviated as SG-CNN) to achieve efficient training with a limited training dataset in HSI classification. SG-CNN consists of SG conv units that employ conventional and atrous convolution in different groups, followed by channel shuffle operation and shortcut connection. In this way, SG-CNNs have less trainable parameters, whilst they can still be accurately and efficiently trained with fewer labeled samples. Transfer learning between different HSI datasets is also applied on the SG-CNN to further improve the classification accuracy. To evaluate the effectiveness of SG-CNNs for HSI classification, experiments have been conducted on three public HSI datasets pretrained on HSIs from different sensors. SG-CNNs with different levels of complexity were tested, and their classification results were compared with fine-tuned ShuffleNet2, ResNeXt, and their original counterparts. The experimental results demonstrate that SG-CNNs can achieve competitive classification performance when the amount of labeled data for training is poor, as well as efficiently providing satisfying classification results.


2020 ◽  
Vol 12 (20) ◽  
pp. 3408
Author(s):  
Lanxue Dang ◽  
Peidong Pang ◽  
Jay Lee

The neural network-based hyperspectral images (HSI) classification model has a deep structure, which leads to the increase of training parameters, long training time, and excessive computational cost. The deepened network models are likely to cause the problem of gradient disappearance, which limits further improvement for its classification accuracy. To this end, a residual unit with fewer training parameters were constructed by combining the residual connection with the depth-wise separable convolution. With the increased depth of the network, the number of output channels of each residual unit increases linearly with a small amplitude. The deepened network can continuously extract the spectral and spatial features while building a cone network structure by stacking the residual units. At the end of executing the model, a 1 × 1 convolution layer combined with a global average pooling layer can be used to replace the traditional fully connected layer to complete the classification with reduced parameters needed in the network. Experiments were conducted on three benchmark HSI datasets: Indian Pines, Pavia University, and Kennedy Space Center. The overall classification accuracy was 98.85%, 99.58%, and 99.96% respectively. Compared with other classification methods, the proposed network model guarantees a higher classification accuracy while spending less time on training and testing sample sites.


2022 ◽  
Vol 7 ◽  
pp. e831
Author(s):  
Xudong Jia ◽  
Li Wang

Text classification is a fundamental task in many applications such as topic labeling, sentiment analysis, and spam detection. The text syntactic relationship and word sequence are important and useful for text classification. How to model and incorporate them to improve performance is one key challenge. Inspired by human behavior in understanding text. In this paper, we combine the syntactic relationship, sequence structure, and semantics for text representation, and propose an attention-enhanced capsule network-based text classification model. Specifically, we use graph convolutional neural networks to encode syntactic dependency trees, build multi-head attention to encode dependencies relationship in text sequence, merge with semantic information by capsule network at last. Extensive experiments on five datasets demonstrate that our approach can effectively improve the performance of text classification compared with state-of-the-art methods. The result also shows capsule network, graph convolutional neural network, and multi-headed attention has integration effects on text classification tasks.


2020 ◽  
Vol 12 (21) ◽  
pp. 3508
Author(s):  
Mohammed Elhenawy ◽  
Huthaifa I. Ashqar ◽  
Mahmoud Masoud ◽  
Mohammed H. Almannaa ◽  
Andry Rakotonirainy ◽  
...  

As the Autonomous Vehicle (AV) industry is rapidly advancing, the classification of non-motorized (vulnerable) road users (VRUs) becomes essential to ensure their safety and to smooth operation of road applications. The typical practice of non-motorized road users’ classification usually takes significant training time and ignores the temporal evolution and behavior of the signal. In this research effort, we attempt to detect VRUs with high accuracy be proposing a novel framework that includes using Deep Transfer Learning, which saves training time and cost, to classify images constructed from Recurrence Quantification Analysis (RQA) that reflect the temporal dynamics and behavior of the signal. Recurrence Plots (RPs) were constructed from low-power smartphone sensors without using GPS data. The resulted RPs were used as inputs for different pre-trained Convolutional Neural Network (CNN) classifiers including constructing 227 × 227 images to be used for AlexNet and SqueezeNet; and constructing 224 × 224 images to be used for VGG16 and VGG19. Results show that the classification accuracy of Convolutional Neural Network Transfer Learning (CNN-TL) reaches 98.70%, 98.62%, 98.71%, and 98.71% for AlexNet, SqueezeNet, VGG16, and VGG19, respectively. Moreover, we trained resnet101 and shufflenet for a very short time using one epoch of data and then used them as weak learners, which yielded 98.49% classification accuracy. The results of the proposed framework outperform other results in the literature (to the best of our knowledge) and show that using CNN-TL is promising for VRUs classification. Because of its relative straightforwardness, ability to be generalized and transferred, and potential high accuracy, we anticipate that this framework might be able to solve various problems related to signal classification.


Sign in / Sign up

Export Citation Format

Share Document