scholarly journals Simulation of the Performance Metrics for Securing DSDV Routing Protocol Based on Trusted Environments

2021 ◽  
Vol 2068 (1) ◽  
pp. 012047
Author(s):  
Chiang Ling Feng

Abstract To organize the network in an efficient way to minimize the risk of illegal node and to safeguard protected information, a security mechanism is required to secure communication. In addition, a security mechanism is also required to ensure that received information have not been tampered with. In this paper, a more efficient mechanism for Securing the Destination Sequenced Distance Vector Routing Protocol (SDSDV) is proposed. This paper comprehensively investigates the performance impacts by varying the number of maximum connections and mobility on securing the ad hoc network with Destination Sequenced Distance Vector Routing Protocol (DSDV) Routing Protocol. From simulation results, we explore the causes for performance degradation. Based on the investigation, we indicate that we have to impose restrictions on the maximum connections to acquire an expected performance. These results also reveal that the performance decreases with the increment of the mobility and maximum connections that is unequal to 60. If we want to obtain the optimal performance, the number of nodes in a network should be constrained to be 60 if the maximum connections are 60.

Author(s):  
. Harpal ◽  
Gaurav Tejpal ◽  
Sonal Sharma

In this time of instant units, Mobile Ad-hoc Network(MANET) has become an indivisible part for transmission for mobile devices. Therefore, curiosity about study of Mobile Ad-hoc Network has been growing because last several years. In this report we have mentioned some simple routing protocols in MANET like Destination Sequenced Distance Vector, Active Source Redirecting, Temporally-Ordered Redirecting Algorithm and Ad-hoc On Need Distance Vector. Protection is just a serious problem in MANETs because they are infrastructure-less and autonomous. Principal target of writing this report is to handle some simple problems and security considerations in MANET, operation of wormhole strike and acquiring the well-known routing protocol Ad-hoc On Need Distance Vector. This short article will be a great help for the people performing study on real world problems in MANET security.


2020 ◽  
Vol 9 (3) ◽  
pp. 40 ◽  
Author(s):  
Afsana Ahamed ◽  
Hamid Vakilzadian

A vehicular ad hoc network (VANET) is a technology in which moving cars are used as routers (nodes) to establish a reliable mobile communication network among the vehicles. Some of the drawbacks of the routing protocol, Ad hoc On-Demand Distance Vector (AODV), associated with VANETs are the end-to-end delay and packet loss. We modified the AODV routing protocols to reduce the number of route request (RREQ) and route reply (RREP) messages by adding direction parameters and two-step filtering. The two-step filtering process reduces the number of RREQ and RREP packets, reduces the packet overhead, and helps to select the stable route. In this study, we show the impact of the direction parameter in reducing the end-to-end delay and the packet loss in AODV. The simulation results show a 1.4% reduction in packet loss, an 11% reduction in the end-to-end delay, and an increase in throughput.


Author(s):  
Haibo Jiang ◽  
Yaofei Ma ◽  
Dongsheng Hong ◽  
Zhen Li

Wireless ad hoc network is generally employed in military and emergencies due to its flexibility and easy-to-use. It is suitable for military wireless network that has the characteristics of mobility and works effectively under severe environment and electromagnetic interfering conditions. However, military network cannot benefit from existing routing protocol directly; there exists quite many features which are only typical for military network. For example, there are several radios in the same vehicle. This paper presents a new metric for routing, which is employed in A* algorithm. The goal of the metric is to choose a route of less distance and less transmission delay between a source and a destination. Our metric is a function of the distance between the ends and the bandwidth over the link. Moreover, we take frequency selection into account since a node can work on multi-frequencies. This paper proposed the new metric, and experimented it based on A* algorithm. The simulation results show that this metric can find the optimal route which has less transmission delay compared to the shortest path routing.


2015 ◽  
Vol 21 (11) ◽  
pp. 3433-3438
Author(s):  
Deni Lumbantoruan ◽  
David Panjaitan ◽  
Jojo Hutagalung ◽  
Yoel Simanjuntak

Ad-hoc network is a network of moving wireless nodes which do not have a central or permanent influence over their connections. It is a mobile node device that is auto configured and connected to an arbitrary infrastructure through wireless connections. Therefore, due to the highly complex environment, MANET routing is acrucial activity. Various protocols are used to enhance the routing process, such that a network route is found between every transmitter and the host receiver. In this post, we modified the AODV protocol to increase the rate of throughput, end-to-end delays, and packet distribution, etc. We used ns3 simulator to compare the protocols AODV, DSDV, OLSR and Enhanced AODV. It is noteworthy that EAODV routing protocols perform much better than OLSR that the DSDV routing protocol provides high throughput, a lower latency and high delivery ratio of packages. In addition, our proposed energy efficient model has changed conventional AODV. Our improved EAODV protocol's overall performance is 3% superior to other conventional protocols.


Author(s):  
Ajay Vyas ◽  
Margam Suthar

Mobility models are used to evaluated the network protocols of the ad hoc network using the simulation. The random waypoint model is a model for mobility which is usually used for performance evaluation of ad-hoc mobile network. Mobile nodes have the dynamic mobility in the ad hoc network so the mobility model plays an important role to evaluate the protocol performance.In this article, we developed modify random waypoint mobility (MRWM) model based on random waypoint for the mobile ad hoc network. In this article, the comparative analysis of modifying random waypoint mobility and random waypoint model on the ad hoc On-Demand Distance Vector (AODV) routing protocol has been done for large wireless ad hoc network (100 nodes) with the random mobile environment for the 1800s simulation time. To enhance the confidence on the protocol widespread simulations were accomplished under heavy traffic (i.e. 80 nodes) condition. The proposed model protocol has been investigated with the performance metrics: throughput; packet delivery ratio; packet dropping ratio; the end to end delay and normalized routing overhead. The obtained results revealed that proposed modify random waypoint mobility model reduces the mobility as compared to the random waypoint mobility model and it is trace is more realist.


2017 ◽  
Vol 1 (1) ◽  
pp. 47-50
Author(s):  
Marumo R. Okaile ◽  
Adedeji O. Sangodoyin ◽  
Ramajalwa P. Emma P. Ramajalwa ◽  
Moile Tshepo

Routing protocol selection are the primary ways to design any wireless network. In Mobile Ad-hoc Network (MANET), the chosen protocol ought to be the best in terms information delivery and data integrity. Hence, the performance analysis of the protocol is the major step before choosing a specific protocol. In this paper, the performance analysis is applied to Ad-Hoc On-Demand Distance Vector protocol using Network Simulator2. Packet delivery ratio and energy are the two common measures used for the comparison of the performance of above protocol.


2004 ◽  
Vol 17 (1) ◽  
pp. 53-68
Author(s):  
Srdjan Krco ◽  
Marina Dupcinov ◽  
Sean Murphy

The performance of an IEEE 802.11b ad-hoc network that uses the AODV (Ad hoc On-demand Distance Vector) routing protocol is evaluated. One significant issue relating to the behavior of WLAN cards that has considerable impact on AODV performance was observed during the initial testing of the system and it is discussed and a solution proposed. Some aspects of the network performance are then assessed for several scenarios with low mobility. Route discovery latency results indicate that it is possible for mobile applications to operate reasonably well over ad-hoc networks in light to moderate traffic. UDP throughput results indicate that such networks could support tens of users using low-bit rate applications or possibly higher bit rates if applications generate data in bursts. Finally, some problems with TCP operating in this context were observed.


Sign in / Sign up

Export Citation Format

Share Document