scholarly journals Sleep quality assessment by parameter optimization

2021 ◽  
Vol 2070 (1) ◽  
pp. 012013
Author(s):  
H Adil ◽  
A A Koser ◽  
M S Qureshi ◽  
A Gupta

Abstract Sleep quality measurement is a complex process requires large number of parameters to monitor sleep and sleep cycles. The Gold Standard Polysomnography (PSG) parameters are considered as standard parameters for sleep quality measurement. In the PSG process, number of monitoring parameters are involved for that large number of sensors are used which makes this process complex, expensive and obtrusive. There is need to find optimize parameters which are directly involve in providing accurate information about sleep and reduce the process complexity. Our Parameter Optimization method is based on parameter reduction by finding key parameters and their inter dependent parameters. Sleep monitoring by these optimize parameter is different from both, clinical complex (PSG) used in hospitals and commercially available devices which work on dependent and dynamic parameter sensing. Optimized parameters obtained from PSG parameters are Electrocardiogram (ECG), Electrooculogram (EOG), Electroencephalography (EEG) and Cerebral blood flow (CBF). These key parameters show close correlation with sleep and hence reduce complexity in sleep monitoring by providing simultaneous measurement of appropriate signals for sleep analysis.

Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 163
Author(s):  
Yaru Li ◽  
Yulai Zhang ◽  
Yongping Cai

The selection of the hyper-parameters plays a critical role in the task of prediction based on the recurrent neural networks (RNN). Traditionally, the hyper-parameters of the machine learning models are selected by simulations as well as human experiences. In recent years, multiple algorithms based on Bayesian optimization (BO) are developed to determine the optimal values of the hyper-parameters. In most of these methods, gradients are required to be calculated. In this work, the particle swarm optimization (PSO) is used under the BO framework to develop a new method for hyper-parameter optimization. The proposed algorithm (BO-PSO) is free of gradient calculation and the particles can be optimized in parallel naturally. So the computational complexity can be effectively reduced which means better hyper-parameters can be obtained under the same amount of calculation. Experiments are done on real world power load data,where the proposed method outperforms the existing state-of-the-art algorithms,BO with limit-BFGS-bound (BO-L-BFGS-B) and BO with truncated-newton (BO-TNC),in terms of the prediction accuracy. The errors of the prediction result in different models show that BO-PSO is an effective hyper-parameter optimization method.


2021 ◽  
Vol 10 (6) ◽  
pp. 420
Author(s):  
Jun Wang ◽  
Lili Jiang ◽  
Qingwen Qi ◽  
Yongji Wang

Image segmentation is of significance because it can provide objects that are the minimum analysis units for geographic object-based image analysis (GEOBIA). Most segmentation methods usually set parameters to identify geo-objects, and different parameter settings lead to different segmentation results; thus, parameter optimization is critical to obtain satisfactory segmentation results. Currently, many parameter optimization methods have been developed and successfully applied to the identification of single geo-objects. However, few studies have focused on the recognition of the union of different types of geo-objects (semantic geo-objects), such as a park. The recognition of semantic geo-objects is likely more crucial than that of single geo-objects because the former type of recognition is more correlated with the human perception. This paper proposes an approach to recognize semantic geo-objects. The key concept is that a single geo-object is the smallest component unit of a semantic geo-object, and semantic geo-objects are recognized by iteratively merging single geo-objects. Thus, the optimal scale of the semantic geo-objects is determined by iteratively recognizing the optimal scales of single geo-objects and using them as the initiation point of the reset scale parameter optimization interval. In this paper, we adopt the multiresolution segmentation (MRS) method to segment Gaofen-1 images and tested three scale parameter optimization methods to validate the proposed approach. The results show that the proposed approach can determine the scale parameters, which can produce semantic geo-objects.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Chao Zhang ◽  
Ru-bin Wang ◽  
Qing-xiang Meng

Parameter optimization for the conceptual rainfall-runoff (CRR) model has always been the difficult problem in hydrology since watershed hydrological model is high-dimensional and nonlinear with multimodal and nonconvex response surface and its parameters are obviously related and complementary. In the research presented here, the shuffled complex evolution (SCE-UA) global optimization method was used to calibrate the Xinanjiang (XAJ) model. We defined the ideal data and applied the method to observed data. Our results show that, in the case of ideal data, the data length did not affect the parameter optimization for the hydrological model. If the objective function was selected appropriately, the proposed method found the true parameter values. In the case of observed data, we applied the technique to different lengths of data (1, 2, and 3 years) and compared the results with ideal data. We found that errors in the data and model structure lead to significant uncertainties in the parameter optimization.


2022 ◽  
pp. 166-201
Author(s):  
Asha Gowda Karegowda ◽  
Devika G.

Artificial neural networks (ANN) are often more suitable for classification problems. Even then, training of ANN is a surviving challenge task for large and high dimensional natured search space problems. These hitches are more for applications that involves process of fine tuning of ANN control parameters: weights and bias. There is no single search and optimization method that suits the weights and bias of ANN for all the problems. The traditional heuristic approach fails because of their poorer convergence speed and chances of ending up with local optima. In this connection, the meta-heuristic algorithms prove to provide consistent solution for optimizing ANN training parameters. This chapter will provide critics on both heuristics and meta-heuristic existing literature for training neural networks algorithms, applicability, and reliability on parameter optimization. In addition, the real-time applications of ANN will be presented. Finally, future directions to be explored in the field of ANN are presented which will of potential interest for upcoming researchers.


Sign in / Sign up

Export Citation Format

Share Document