scholarly journals Preface

2021 ◽  
Vol 2072 (1) ◽  
pp. 011001

The role of computation and simulation to support reseach activities in sciences and technologies becomes more important in recent decades. The International Conference on Computation in Science and Engineering (ICCSE) 2019 have been conducted in Bandung Institute of Technology (ITB) campus, Bandung, Indonesia, at 14-15 October 2019. This conference is organized by Bandung Institute of Technology (ITB, Indonesia). This conference aims at summarizing recent research activities relevant to the computation application in science and engineering and facilitate communication among relevant experts. More than 50 persons from Indonesia, Japan, Malaysia, Turkey, and some other countries will participate in this conference. About 50 presentations including 8 plenary talk will be presented. The presentations are grouped into 12 areas of particular interest: (1) : Complex system Modelling, (2): Energy System Computation, (3): Fluid Dynamics Computation, (4): Artificial Intelligent and Soft Computing, (5): High Energy Physics, (6): Simulation in general, (7): Quantum Computation, (8) HPC, (9): Material Computation, (10): Sub surface modelling and computation, (11): Nuclear and Radiation Computation, and (12): Atmospheric and meteorological computation. List of Organizer, Editorial Board, Contact are available in this pdf.

Author(s):  
Richard Healey

The metaphor that fundamental physics is concerned to say what the natural world is like at the deepest level may be cashed out in terms of entities, properties, or laws. The role of quantum field theories in the Standard Model of high-energy physics suggests that fundamental entities, properties, and laws are to be sought in these theories. But the contextual ontology proposed in Chapter 12 would support no unified compositional structure for the world; a quantum state assignment specifies no physical property distribution sufficient even to determine all physical facts; and quantum theory posits no fundamental laws of time evolution, whether deterministic or stochastic. Quantum theory has made a revolutionary contribution to fundamental physics because its principles have permitted tremendous unification of science through the successful application of models constructed in conformity to them: but these models do not say what the world is like at the deepest level.


2019 ◽  
Vol 214 ◽  
pp. 08009 ◽  
Author(s):  
Matthias J. Schnepf ◽  
R. Florian von Cube ◽  
Max Fischer ◽  
Manuel Giffels ◽  
Christoph Heidecker ◽  
...  

Demand for computing resources in high energy physics (HEP) shows a highly dynamic behavior, while the provided resources by the Worldwide LHC Computing Grid (WLCG) remains static. It has become evident that opportunistic resources such as High Performance Computing (HPC) centers and commercial clouds are well suited to cover peak loads. However, the utilization of these resources gives rise to new levels of complexity, e.g. resources need to be managed highly dynamically and HEP applications require a very specific software environment usually not provided at opportunistic resources. Furthermore, aspects to consider are limitations in network bandwidth causing I/O-intensive workflows to run inefficiently. The key component to dynamically run HEP applications on opportunistic resources is the utilization of modern container and virtualization technologies. Based on these technologies, the Karlsruhe Institute of Technology (KIT) has developed ROCED, a resource manager to dynamically integrate and manage a variety of opportunistic resources. In combination with ROCED, HTCondor batch system acts as a powerful single entry point to all available computing resources, leading to a seamless and transparent integration of opportunistic resources into HEP computing. KIT is currently improving the resource management and job scheduling by focusing on I/O requirements of individual workflows, available network bandwidth as well as scalability. For these reasons, we are currently developing a new resource manager, called TARDIS. In this paper, we give an overview of the utilized technologies, the dynamic management, and integration of resources as well as the status of the I/O-based resource and job scheduling.


2005 ◽  
Author(s):  
H M Spinka ◽  
L J Nodulman ◽  
M C Goodman ◽  
J Repond ◽  
D S Ayres ◽  
...  

Author(s):  
Robert Knutsen ◽  
Charlene Steyn ◽  
Martin Nicol

This article explores ideas for linking university research entities with small- and medium-sized manufacturing industries. In an environment such as the Western Cape, South Africa, where well established teaching and research activities in science and engineering exist at several universities and research institutions, it is astonishing to realize that the local manufacturing industry struggles to obtain assistance with research and development in order to remain competitive locally and globally. Some of the reasons for this situation are outlined and solutions are proposed. In particular, the role of a gateway organization which aims to build networks between universities, research institutions and industry is described.


Author(s):  
Seokyoung Kim ◽  
Paul E. Dodds ◽  
Isabela Butnar

Long-distance air travel requires fuel with a high specific energy and a high energy density. There are no viable alternatives to carbon-based fuels. Synthetic jet fuel from the Fischer-Tropsch (FT) process, employing sustainable feedstocks, is a potential low-carbon alternative. A number of synthetic fuel production routes have been developed, using a range of feedstocks including biomass, waste, hydrogen and captured CO2. We review three energy system models and find that many of these production routes are not represented. We examine the market share of synthetic fuels in each model in a scenario in which the Paris Agreement target is achieved. In 2050, it is cheaper to use conventional jet fuel coupled with a negative emissions technology than to produce sustainable synthetic fuels in the TIAM-UCL and UK TIMES models. However, the JRC-EU-TIMES model, which represents the most production routes, finds a substantial role for synthetic jet fuels, partly because underground CO2 storage is assumed limited. These scenarios demonstrate a strong link between synthetic fuels, carbon capture and storage, and negative emissions. Future model improvements include better representing blending limits for synthetic jet fuels to meet international fuel standards, reducing the costs of synthetic fuels, and ensuring production routes are sustainable.


Sign in / Sign up

Export Citation Format

Share Document