scholarly journals Physical parameters for the estimation of the return coefficient in the sewer of the La Chivera watershed

2021 ◽  
Vol 2073 (1) ◽  
pp. 012018
Author(s):  
N J Cely-Calixto ◽  
C A Bonilla-Granados ◽  
R J Gallardo-Amaya

Abstract Estimating the amount of flow carried by the sanitary sewer system in a locality is essential for the design of new facilities. Having a record of the flow rates allows the adequate hydraulic design of a drainage system. The objective of this work is to determine the physical parameters for the estimation of the return coefficient that allows estimating the flow rates for the sanitary sewer of the La Chivera watershed, San José de Cúcuta, Colombia. In this sense, dry weather monitoring of the wastewater in the study area was carried out. The data collected in the field were used to construct the hourly flow variation curve or inflow hydrograph in the drainage system. The average hourly flow parameters were estimated with a value of 205.7 m3/h, a value recorded at the 11th hour of the day. Similarly, the average daily flow was determined with a value of 180.3 m3/h, while the maximum peak factor was 1.14. Finally, through the physical parameters of the sanitary sewer, the return coefficient was determined, which is 0.72, a value that represents the conditions of the study area.

2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Mustafa Erkan Turan ◽  
Goksen Bacak-Turan ◽  
Tulin Cetin ◽  
Ersin Aslan

A graph theory-based methodology is proposed for the sewer system optimization problem in this study. Sewer system optimization includes two subproblems: layout optimization and hydraulic design optimization, which can be solved independently or solved simultaneously. No matter which method is chosen for the solution of the optimization problem, a feasible layout that satisfies the restrictions of the sewer system must be obtained in any step of the solution. There are two different layout options encountered: the layouts containing all sewer links and the layouts not containing all sewer links. The method proposed in this study generates a feasible sewer layout that contains all sewer links and satisfies all restrictions of a sanitary sewer system by using graph theory without any additional strategies unlike other studies. The method is applied to two different case studies. The results of the case studies have shown that graph theory is well applicable to sewer system optimization and the methodology proposed based on it is capable of generating a feasible layout. This study is expected to stimulate the use of graph theory on similar studies.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1886
Author(s):  
Arezoo Zahediasl ◽  
Amin E. Bakhshipour ◽  
Ulrich Dittmer ◽  
Ali Haghighi

In recent years, the concept of a centralized drainage system that connect an entire city to one single treatment plant is increasingly being questioned in terms of the costs, reliability, and environmental impacts. This study introduces an optimization approach based on decentralization in order to develop a cost-effective and sustainable sewage collection system. For this purpose, a new algorithm based on the growing spanning tree algorithm is developed for decentralized layout generation and treatment plant allocation. The trade-off between construction and operation costs, resilience, and the degree of centralization is a multiobjective problem that consists of two subproblems: the layout of the networks and the hydraulic design. The innovative characteristics of the proposed framework are that layout and hydraulic designs are solved simultaneously, three objectives are optimized together, and the entire problem solving process is self-adaptive. The model is then applied to a real case study. The results show that finding an optimum degree of centralization could reduce not only the network’s costs by 17.3%, but could also increase its structural resilience significantly compared to fully centralized networks.


1997 ◽  
Vol 36 (5) ◽  
pp. 373-380 ◽  
Author(s):  
C. Fronteau ◽  
W. Bauwens ◽  
P.A. Vanrolleghem

All the parts of an urban drainage system, i.e. the sewer system, the wastewater treatment plant (WWTP) and the river, should be integrated into one single model to assess the performance of the overall system and for the development of design and control strategies assisting in its sustainable and cost effective management. Existing models for the individual components of the system have to be merged in order to develop the integrated tool. One of the problems arising from this methodology is the incompatibility of state variables, processes and parameters used in the different modelling approaches. Optimisation of an urban drainage system, and of the wastewater treatment process in particular, requires a good knowledge of the wastewater composition. As important transformations take place between the emission from the household and the arrival at the treatment facility, sewer models should include these transformations in the sewer system. At present, however, research is still needed in order to increase our knowledge of these in-sewer processes. A comparison of the state variables, processes and parameters has been carried out in both sewer models (SMs) and activated sludge models (ASMs). An ASM approach is used for the description of reactions in sewer models. However, a difference is found in the expression for organic material (expressed in terms of BOD) and heterotrophic biomass is absent as a state variable, resulting in differences in processes and parameters. Reconciliation of both the models seems worthwhile and a preliminary solution is suggested in this paper.


2013 ◽  
Vol 68 (12) ◽  
pp. 2527-2533 ◽  
Author(s):  
Mary Kay Camarillo ◽  
William T. Stringfellow ◽  
Jeremy S. Hanlon ◽  
Elizabeth Basha

Controlling odours from sanitary sewer systems is challenging as a result of the expansive nature of these systems. Addition of oxidizing chemicals is often practiced as a mitigation strategy. One alternative is to remove odorous compounds in the gases vented from manholes using adsorptive media. In this study, odour control devices located at manholes were observed to determine the ability of these systems to reduce hydrogen sulphide from vented gases. The odour control devices incorporated pressure regulation to control gas flow out of manhole covers and adsorptive media to remove hydrogen sulphide in the vented gases prior to release. Pressure regulation was accomplished using a variable volume bladder and two pressure relief valves that permitted gas flow when pressures exceeded 1.3 to 2.5 cm water column. The reduction in gas flow vented from manholes was intended to extend the service life of the adsorptive media, as compared with odour control devices that do not incorporate pressure modulation. Devices were deployed at four locations and three adsorptive media were tested. Although measured collection system hydrogen sulphide concentrations varied from zero to over 1,000 ppm, the removal rates observed using odour control devices were typically above 90%. The lower removal rates observed at one of the sites (50.5 ± 36.1%) appeared related to high gas flow rates being emitted at this location. Activated carbon was used in most of the tests, although use of iron media resulted in the highest removal observed: 97.8 ± 3.6%. The expected service life of the adsorptive media contained within the odour control devices is a function of site-specific hydrogen sulphide concentrations and gas flow rates. The units used in this study were in service for more than 8 to 12 months prior to requiring media replacement.


2018 ◽  
Vol 4 (3) ◽  
pp. 385-393 ◽  
Author(s):  
Mingkai Zhang ◽  
Yanchen Liu ◽  
Qian Dong ◽  
Yi Hong ◽  
Xia Huang ◽  
...  

Rainfall-derived inflow and infiltration (RDII) of urban sanitary sewer systems poses serious challenges for public health and management issues.


2017 ◽  
Vol 76 (6) ◽  
pp. 1324-1331 ◽  
Author(s):  
Lorenzo Pugliese ◽  
Jacob Bruun ◽  
Charlotte Kjaergaard ◽  
Carl Christian Hoffmann ◽  
Guenter Langergraber

Biogeochemical processes in subsurface flow constructed wetlands are influenced by flow direction, degree of saturation and influent loading position. This study presents a simulation tool, which aims to predict the performance of the unit and improve the design. The model was developed using the HYDRUS program, calibrated and verified on previously measured bromide (Br−) pulse tracer tests. Three different hydraulic designs (Horizontal (HF), Vertical upward (VF-up), Vertical downward (VF-down) and two different flow rates: Low (L), and High (H)) were investigated. The model simulated well the Br− transport behaviour and the results underline the importance of the hydraulic design. Calibrated model parameters (longitudinal dispersivity, immobile liquid phase, mass transfer coefficient) showed a common trend for all the designs, for increasing flow rates within the investigated range. The VF-down performed best, i.e. had the highest hydraulic retention time.


2019 ◽  
Vol 111 ◽  
pp. 01073
Author(s):  
Alessandro Maccarini ◽  
Göran Hultmark ◽  
Niels C. Bergsøe ◽  
Alireza Afshari

This paper presents an investigation on the operation of a novel active beam system installed in an office building located in Jönköping, Sweden. The system consists of two parts: a dedicated outdoor air system (DOAS) to satisfy latent loads and ventilation requirements, and a water circuit to meet sensible heating and cooling loads. The novelty of the system is in relation to the water circuit, which is able to provide simultaneous heating and cooling through a single water loop that is near the room temperature. The energy performance of the system is currently being monitored through a number of sensors placed along the water circuit. Relevant physical parameters are being measured and data are available through a monitoring system. A preliminary analysis shows that the system is performing as designed. Results are shown for a typical week in winter, spring and summer. In particular, the supply water temperature in the circuit was between 20°C (in summer) and 23.2°C (in winter). The maximum supply/return temperature difference was found in summer and it assumed a value of 1.5 K. It is noticed that in spring supply and return water temperatures almost overlap.


Sign in / Sign up

Export Citation Format

Share Document