scholarly journals Toward Decentralised Sanitary Sewage Collection Systems: A Multiobjective Approach for Cost-Effective and Resilient Designs

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1886
Author(s):  
Arezoo Zahediasl ◽  
Amin E. Bakhshipour ◽  
Ulrich Dittmer ◽  
Ali Haghighi

In recent years, the concept of a centralized drainage system that connect an entire city to one single treatment plant is increasingly being questioned in terms of the costs, reliability, and environmental impacts. This study introduces an optimization approach based on decentralization in order to develop a cost-effective and sustainable sewage collection system. For this purpose, a new algorithm based on the growing spanning tree algorithm is developed for decentralized layout generation and treatment plant allocation. The trade-off between construction and operation costs, resilience, and the degree of centralization is a multiobjective problem that consists of two subproblems: the layout of the networks and the hydraulic design. The innovative characteristics of the proposed framework are that layout and hydraulic designs are solved simultaneously, three objectives are optimized together, and the entire problem solving process is self-adaptive. The model is then applied to a real case study. The results show that finding an optimum degree of centralization could reduce not only the network’s costs by 17.3%, but could also increase its structural resilience significantly compared to fully centralized networks.

2011 ◽  
Vol 64 (5) ◽  
pp. 1081-1088 ◽  
Author(s):  
Manfred Kleidorfer ◽  
Wolfgang Rauch

The Austrian standard for designing combined sewer overflow (CSO) detention basins introduces the efficiency of the combined sewer overflows as an indicator for CSO pollution. Additionally criteria for the ambient water quality are defined, which comprehend six kinds of impacts. In this paper, the Austrian legal requirements are described and discussed by means of hydrological modelling. This is exemplified with the case study Innsbruck (Austria) including a description for model building and model calibration. Furthermore an example is shown in order to demonstrate how – in this case – the overall system performance could be improved by implementing a cost-effective rearrangement of the storage tanks already available at the inflow of the wastewater treatment plant. However, this guideline also allows more innovative methods for reducing CSO emissions as measures for better usage of storage volume or de-centralised treatment of stormwater runoff because it is based on a sewer system simulation.


1990 ◽  
Vol 22 (12) ◽  
pp. 75-83
Author(s):  
Ann E. Farrell ◽  
Bert Michalczyk ◽  
Anaya Nance

The viability of continued sludge incineration at Central Contra Costa Sanitary District wastewater treatment plant is presented as a case study. A risk based approach was utilized to assess the long-term feasibility and cost of continued incineration compared to other available sludge handling methods. Three major tasks were conducted as part of the study: an incinerator capacity evaluation; a risk assessment; and, an evaluation of solids handling technologies. The study focused on toxics most often encountered in sewage incinerator emissions, including arsenic, beryllium, cadmium, chromium, lead, mercury, nickel, poly-chlorinated dibenzo-p-dioxins, and polychlorinated dibenzo-p-furans. The results of the study indicate that continued incineration of sludge is viable for Central Contra Costa Sanitary District, and that the most cost effective solids handling method is incineration using two duty units with backup provided by chemical stabilization. To confirm costs and design criteria, pilot testing of two potential back-up methods is currently being conducted.These methods are chemical stabilization and indirect drying.


2018 ◽  
Vol 13 (3) ◽  
pp. 594-598
Author(s):  
Zhang Jinsong ◽  
Liu Jerry

Abstract Wastewaters from chemical industries usually contain pollutants which are toxic and non-biodegradable. Treatment of chemical wastewaters is always a challenging topic in view of the stringent environmental regulations that have to be adhered to. Since 2014, the Chinese government has been continuously tightening the industrial wastewater (IWW) discharge standards, which requires improved quality of IWW effluent. This poses great challenges to the chemical industries in China, especially to many of the chemical industry clusters where the wastewaters usually contain more toxic and non-biodegradable contaminants. Membrane bioreactor (MBR) technology has been proved to be a reliable and cost-effective solution for the treatment of IWW. However, MBR alone could not effectively remove non-biodegradable organics, it needs to be integrated with advanced oxidization process and/or other physical-chemical treatment processes to improve the overall treatment efficiency. In this paper, studies on the performance of different integrated MBR processes in Industrial Wastewater Treatment Plant-A (IWTP-A) will be discussed, including Fenton + MBR, MBR + ozonation + biological aerated filter, and MBR + porous resin sorption.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2807
Author(s):  
Alessio Cardini ◽  
Elisa Pellegrino ◽  
Laura Ercoli

This study investigated the occurrence of 12 pharmaceuticals (PhCs) in surface water in Central Italy, aiming to improve the estimation of the predicted environmental concentration (PEC) by normalizing the loads to the number of inhabitants of the drainage system in rural, periurban, and urban areas. We performed two sampling campaigns assessing the concentration of PhCs (measured environmental concentration (MEC)) in surface water and in effluent from a wastewater treatment plant. The reliability of PEC calculated by the refined formula was assessed and compared to the ratio obtained by the unrefined formula. MECs of diclofenac, estradiol, estrone, ibuprofen, metformin, naproxen, sulfamethoxazole, atenolol, carbamazepine, and dehydro-erythromycin were significantly higher in urban than in periurban and rural areas, and increases were 12-, 3600-, 256-, 33-, 18-, 120-, 10-, 5-, 2-, and 1-fold, respectively. Refinement of PEC improved estimation of PhC concentrations for all areas, especially for the urban one. The environmental risk was predicted as low for atenolol, carbamazepine, erythromycin, metformin, and naproxen; low/medium for diclofenac and ibuprofen; and high for clarithromycin, estradiol, estrone, and sulfamethoxazole. Overall, the highest risk was posed by PhCs in effluent, while a progressively decreasing risk was estimated for urban, periurban, and rural areas.


2002 ◽  
Vol 46 (9) ◽  
pp. 11-20 ◽  
Author(s):  
J. Vollertsen ◽  
T. Hvitved-Jacobsen ◽  
Z. Ujang ◽  
S.A. Talib

Sewer system design must be integrated with wastewater treatment plant design when moving towards a more sustainable urban wastewater management. This integration allows an optimization of the design of both systems to achieve a better and more cost-effective wastewater management. Hitherto integrated process design has not been an option because the tools to predict in-sewer wastewater transformations have been inadequate. In this study the WATS model - being a new and validated tool for in-sewer microbial process simulations - is presented and its application for integrated sewer and treatment plant design is exemplified. A case study on a Malaysian catchment illustrates this integration. The effects of centralization of wastewater treatment and the subsequently longer transport distances are addressed. The layout of the intercepting sewer is optimized to meet the requirements of different treatment scenarios.


2012 ◽  
Vol 65 (10) ◽  
pp. 1781-1788 ◽  
Author(s):  
X. Dong ◽  
S. Zeng ◽  
J. Chen ◽  
D. Zhao

Due to sustained economic growth in China over the last three decades, urbanization has been on a rapidly expanding track. In recent years, regional industrial relocations were also accelerated across the country from the east coast to the west inland. These changes have led to a large-scale redesign of urban infrastructures, including the drainage system. To help the reconstructed infrastructures towards a better sustainability, a tool is required for assessing the efficiency and environmental performance of different renovation schemes. This paper developed an integrated dynamic modeling tool, which consisted of three models for describing the sewer, the wastewater treatment plant (WWTP) and the receiving water body respectively. Three auxiliary modules were also incorporated to conceptualize the model, calibrate the simulations, and analyze the results. The developed integrated modeling tool was applied to a case study in Shenzhen City, which is one of the most dynamic cities and facing considerable challenges for environmental degradation. The renovation scheme proposed to improve the environmental performance of Shenzhen City's urban drainage system was modeled and evaluated. The simulation results supplied some suggestions for the further improvement of the renovation scheme.


2009 ◽  
Vol 4 (3) ◽  
Author(s):  
I. Venner ◽  
J. Husband ◽  
J. Noonan ◽  
A. Nelson ◽  
D. Waltrip

In response to rapid population growth as well as to address the nutrient reduction goals for the Chesapeake Bay established by the Virginia Department of Environmental Quality (VDEQ), the Hampton Roads Sanitation District (HRSD) initiated the York River Treatment Plant (YRTP) Expansion Phase 1 project. The existing YRTP is a conventional step-feed activated sludge plant and is rated for an average daily design flow of 57 million liters per day (MLD). This project proposes to expand the existing treatment capacity to 114 MLD and to reduce the nutrients discharged to the York River, a tributary for the Chesapeake Bay. In order to meet the effluent limits set by the VDEQ, a treatment upgrade to limit of technology (LOT) or enhanced nutrient removal (ENR) was required. Malcolm Pirnie worked with HRSD and the VDEQ to develop and evaluate ENR process alternatives to achieve the required effluent limits with the goal of determining the most reliable and cost effective alternative to achieve the aggressive nutrient reduction goals. This paper will highlight the key issues in determining the most desirable treatment process considering both economic and non-economic factors.


2012 ◽  
Vol 7 (1) ◽  
Author(s):  
Yanjin Liu ◽  
Giraldo Eugenio

Cultured bacteria addition is one of the technologies used for odor control and FOG (fat, oil, and grease) removal in wastewater collection systems. This study investigated the efficiency of bacterial addition on wastewater odor control by conducting a set of full scale trials in a 60,000 cubic meter per day system for a period of two years. The objectives of this study were: (i) to identify factors that could impact wastewater treatment plant (WWTP) operations due to the effect of bacterial addition in the collection system, (ii) to estimate/understand the level of those impacts, and (iii) to present some interesting findings from the completed case study. The plant operation data before and during the bacterial addition were reviewed. The application of the cultured bacteria presented in the study was found to have significant impacts on the operation of the WWTP in terms of influent biological oxygen demand (BOD) and total suspended solids (TSS) loading, primary settling, sludge production, energy use, dissolved sulfides concentration, and methane production.


2002 ◽  
Vol 2 (1) ◽  
pp. 233-240 ◽  
Author(s):  
J. Cromphout ◽  
W. Rougge

In Harelbeke a Water Treatment Plant with a capacity of 15,000 m3/day, using Schelde river water has been in operation since April 1995. The treatment process comprises nitrification, dephosphatation by direct filtration, storage into a reservoir, direct filtration, granular activated carbon filtration and disinfection. The design of the three-layer direct filters was based on pilot experiments. The performance of the plant during the five years of operation is discussed. It was found that the removal of atrazin by activated carbon depends on the water temperature.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 161-168 ◽  
Author(s):  
J. Einfeldt

A process, called Bio-Denipho, for combined biological phosphorus and nitrogen removal in a combination of an anaerobic tank and two oxidation ditches is described. In this process the anaerobic tank consisting of three sections working in series is followed by two oxidation ditches. These too are working in series, but with both inlet to and outlet from the tanks changing in a cycle. The Bio-Denipho process is described specifically for the process itself and as a case study for the implementation of the process on a 265,000 pe wastewater treatment plant for the city of Aalborg in Denmark. The plant was designed and erected in two stages and the last stage was inaugurated October 31,1989. Lay-out and functions for the plant is described and design loads, plan lay-out and tank volumes are given in this paper together with performance data for the first year in operation.


Sign in / Sign up

Export Citation Format

Share Document