scholarly journals Safety Design in Electrical Design of High-rise Building in Low Voltage Distribution System

2021 ◽  
Vol 2074 (1) ◽  
pp. 012072
Author(s):  
Yuanling Ma

Abstract With the continuous improvement of intelligent and automatic level of electrical system in high-rise buildings, the structure of electrical equipment in high-rise buildings is becoming more and more complex, and the total load is also increasing. Higher requirements are put forward for the safety design of its power distribution system. The safety design of low-voltage power distribution system is more and more important for the reliability and safety of the electrical system in high-rise buildings. Based on this, this paper first introduces the high-rise building power transformation and distribution system, including the reliability analysis of high-rise building power distribution system, power supply solutions, etc. Secondly, it analyses the design of low-voltage distribution system in the electrical design of high-rise buildings, and finally studies the safety optimization of low-voltage distribution system in the electrical design of high-rise buildings.

2013 ◽  
Vol 791-793 ◽  
pp. 1889-1891
Author(s):  
Yan Li Fan ◽  
Qing En Li

The low-voltage distribution system is the key component of the electrical power system. Some analysis and research of the low-voltage distribution system is carried out in this paper, which provides some scientific basis to design the low-voltage distribution system. Firstly, the summarize of low-voltage distribution system is taken. The influence to productions and livings of low-voltage distribution system is introduced. Secondly, the mode of connection and design philosophy of low-voltage distribution system is studied in detail, especially the high-rise buildings low-voltage distribution system is concluded and summarized.


Author(s):  
Olalekan Kabiru Kareem ◽  
Aderibigbe Adekitan ◽  
Ayokunle Awelewa

Electric power is the bedrock of our modern way of life. In Nigeria, power supply availability, sufficiency and reliability are major operational challenges. At the generation and transmission level, effort is made to ensure status monitoring and fault detection on the power network, but at the distribution level, particularly within domestic consumer communities there are no fault monitoring and detection devices except for HRC fuses at the feeder pillar. Unfortunately, these fuses are sometimes replaced by a copper wire bridge at some locations rendering the system unprotected and creating a great potential for transformer destruction on overload. This study is focused on designing an on-site power system monitoring device to be deployed on selected household entry power cables for detecting and indicating when phase off, low voltage, high voltage, over current, and blown fuse occurs on the building’s incomer line. The fault indication will help in reducing troubleshooting time and also ensure quick service restoration. After design implementation, the test result confirms design accuracy, device functionality and suitability as a low-cost solution to power supply system fault monitoring within local communities.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Naveed Ashraf ◽  
Tahir Izhar ◽  
Ghulam Abbas

The suggested single-phase ac-to-ac matrix converter operated with inverting and noninverting characteristics may solve the grid voltage swell and sag problem in power distribution system, respectively. It is also employed as a direct frequency changer for domestic induction heating. The output voltage is regulated through duty cycle control of high frequency direct PWM (DPWM) and indirect PWM (IDPWM) switching devices. The DPWM control switches control the switching states of IDPWM switching devices. The inverting and noninverting characteristics are achieved with low voltage stresses and hence low dv/dt across the high and low frequency-controlled switches. This reduces their voltage rating and losses. The high voltage overshoot problem in frequency step-up operation is also analyzed. The sliding mode (SM) controller is employed to solve this problem. Pulse selective approach determines the power quality of load voltage. The validity of the mathematically computed values is carried out by modelling the proposed topology in MATLAB/Simulink environment and through hardware results.


2013 ◽  
Vol 14 (1) ◽  
pp. 67-78 ◽  
Author(s):  
Sumit Mazumder ◽  
Arindam Ghosh ◽  
Firuz Zare

Abstract Severe power quality problems can arise when a large number of single-phase distributed energy resources (DERs) are connected to a low-voltage power distribution system. Due to the random location and size of DERs, it may so happen that a particular phase generates excess power than its load demand. In such an event, the excess power will be fed back to the distribution substation and will eventually find its way to the transmission network, causing undesirable voltage–current unbalance. As a solution to this problem, the article proposes the use of a distribution static compensator (DSTATCOM), which regulates voltage at the point of common coupling (PCC), thereby ensuring balanced current flow from and to the distribution substation. Additionally, this device can also support the distribution network in the absence of the utility connection, making the distribution system work as a microgrid. The proposals are validated through extensive digital computer simulation studies using PSCADTM.


2012 ◽  
Vol 220-223 ◽  
pp. 101-106
Author(s):  
Xing Wan ◽  
Xiao Li Zhang

Abstract: Scheduling plans of running a large, traditional power grid often distribute power resources in each small system. And they didn’t take the scope of scheduling operation within the power distribution system into consideration. With the trend separate transmission and distribution, the number of distributed generators that installed is growing rapidly. More and more micro-grid network composed of low-voltage distribution power network are formed. With effective regulation, this system can satisfy local load demand and support networking. The establishment of mechanisms such as AGC support services, with be vital to insure the power quality and reliability. Keywords: distributing power Micro-Grid DG AGC


2019 ◽  
Vol 10 (1) ◽  
pp. 26-37
Author(s):  
Redaksi Tim Jurnal

Distribution system is very important in the distribution of electric power to the load. Therefore, a good and efficient distribution system is needed. The underlying cause of poor electric power distribution system is the amount of voltage drop values in the existing system. In the electric power distribution, 20 kV medium-voltage and 380/220V low voltage networks are used. The distribution system of Gandum Feeder in Angke Substation uses medium-voltage network with Underground Cable channel. They are used because of the towering buildings and the dense population in the area. It is known that the longest the channel and the load current are, the greater the voltage drop. From the result of the voltage drop calculation of Feeder Gandum in Angke Substation, which uses manual calculation and ETAP 12.6.0 program, it showed a slight difference in the result. The result of the voltage drop obtained from manual calculation showed that the percentage value of voltage is 1,94%, while the result obtained from ETAP 12.6.0 program showed that the percentage value is 2,01% These results are still in the PLN standard, because it has not exceeded the specified standard that is -10% of its nominal voltage.


2018 ◽  
Vol 5 (1) ◽  
pp. 82
Author(s):  
I Putu Agus Semara Putra ◽  
I Ketut Wijaya ◽  
I Made Mataram

Load balancing is a routine done by PLN to manage a distribution substation. It is done on Peak Load Time (WBP) only. Initial load measurements and load data on a distribution transformer need to be done for balancing as input of simulation software. The load imbalance in a power distribution system is due to an imbalance in single phase loads in the R, S and T phases in low voltage networks due to the imbalance of the load the current in the neutral transformer arises. The current flowing in the neutral of the transformer causes losses, i.e. losses due to neutral currents in the neutral conductor of transformers and losses due to neutral currents flowing to the ground. In this research load equalization in substation KD 056 was done by making a simulation on the ETAP program by measuring the value of the voltage on the KD 056 substation. The result of load balancing in KD 056 substation with the simulation ETAP program i.e. the voltage drop obtained from the percentage of KD 056 substation after being balanced by voltage drop on phase R which decreased from 7.30% to 1.36% from the 219VA source voltage. Once the KD 056 substation is balanced, it can lower the voltage drop and power losses, thus the system voltage meets the standards of PLN.


Sign in / Sign up

Export Citation Format

Share Document