scholarly journals Study on water erosion and preventive measures of last stage blade of steam turbine

2021 ◽  
Vol 2076 (1) ◽  
pp. 012071
Author(s):  
Zhengxian Wang ◽  
Tong Liu ◽  
Renda Luo

Abstract In the background of carbon peak and carbon neutralization, most thermal power plants are more involved in peak regulation and even in-depth peak regulation in order to absorb new energy such as wind power and Solar power. When the turbine is running under low load, the exhaust pressure decreases, which leads to the increase of exhaust humidity. More and more turbine blades have water erosion. The erosion of the last stage blades will worsen the dynamic performance of the turbine, increase the risk of the last stage blade fracture, and threaten the safe operation of the turbine. This paper studies the mechanism of the last stage blade erosion of steam turbine, and analyzes the main factors which influence the erosion with examples. Combined with the mechanism of water erosion, the relevant preventive measures are made for reference of power supply plant.

2021 ◽  
Vol 9 ◽  
Author(s):  
Shuangshuang Fan ◽  
Ying Wang ◽  
Kun Yao ◽  
Yi Fan ◽  
Jie Wan ◽  
...  

In the operating process of the coal-fired generation during flexible peaking regulation, the primary and secondary water droplets in the steam flowing through the last two stages of the low-pressure cylinder could influence the efficiency and safety of the steam turbine definitely. However, systematic analysis of the movement characteristics of water droplets under low-load conditions is scarcely in the existing research, especially the ultra-low load conditions below 30%. Toward this end, the more novel algebraic slip model and particle transport model mentioned in this paper are used to simulate the primary and secondary water droplets. Taking a 600 MW unit as a research object, the droplets motion characteristics of the last two stages were simulated within four load conditions, including 100, 50, 40, and 30% THA. The results show that the diameter of the primary water droplets is smaller, ranging from 0 to 1 µm, during the flexible peak regulation process of the steam turbine. The deposition is mainly located at the entire moving blades and the trailing edge of the last two stator blades. With the load decreasing, the deposition effect decreases sustainably. And the larger diameters of secondary water droplets range from 10 to 300 µm. The erosion of secondary water droplets in the last stage is more serious than that of the second last stage for different load conditions, and the erosion of the second last stage could be negligible. The pressure face and suction face at 30% blade height of the last stage blade have been eroded most seriously. The lower the load, the worse erosion from the secondary water droplets, which poses a potential threat to the fracture of the last stage blades of the steam turbine. This study provides a certain reference value for the optimal design of steam turbine blades under flexible peak regulation.


Author(s):  
Lorenzo Pinelli ◽  
Federico Vanti ◽  
Lorenzo Peruzzi ◽  
Andrea Arnone ◽  
Andrea Bessone ◽  
...  

Abstract This paper is part of a two-part publication that aims to experimentally and numerically evaluate the aerodynamic and mechanical damping of a last stage ST blade at low load operation. A three-stage downscaled steam turbine with a snubbered last stage moving blade LSMB has been tested in the T10MW test facility of Doosan Skoda Power R&D Department in the context of the FLEXTURBINE European project (Flexible Fossil Power Plants for the Future Energy Market through new and advanced Turbine Technologies). Aerodynamic and flutter simulations of different low load conditions have been performed. The acquired data are used to validate the unsteady CFD approach for the prediction of the aerodynamic damping in terms of logarithmic decrement. Numerical results have been achieved through an upgraded version of the URANS CFD solver, selecting appropriate and robust numerical setups for the simulation of very low load conditions, such as increased condenser pressure at the exhaust hood outlet. The numerical methods for blade aerodamping estimation are based on the computation of the unsteady pressure response caused by the row vibration. They are usually classified in time-linearized, harmonic balance and non-linear approaches both in frequency and time domain. The validation of all these methods historically started in the field of aeronautical low-pressure turbines and has been gradually extended to compressor blades and steam turbine rows. For the analysis of a steam turbine last rotor blade operating at strong part load conditions, non-linear methods are recommended as these approaches are able to deal with strong nonlinear phenomena such as shock waves and massive flow separations inside the domain. Experimental data have been used to separate the contributions of mechanical and aerodynamic damping, extrapolating to zero mass flow the total measured damping. Finally, the comparisons between the aerodynamic damping coming from measurements and CFD results have been reported in order to highlight the capability to properly predict the last stage blade flutter stability at low load conditions. Such comparisons confirms the flutter free design of the new snubbered LSMB blade.


Author(s):  
Ivan McBean ◽  
Said Havakechian ◽  
Pierre-Alain Masserey

In steam turbine power plants, the appropriate design of the last stage blades is critical in determining the plant efficiency and reliability and competitiveness. A high level of technical expertise combined with many years of operating experience are required for the improvement of last stage designs that increases performance, without sacrificing mechanical reliability. This paper focuses on three main development areas that are key for the development of last stage blades, namely the aerodynamic design, the mechanical design and the validation process. The three different lengths of last stage blade (LSB) were developed of 41in, 45in and 49in (and a number of scaled variants). The aerodynamic design process involves 3D CFD and flow path analysis, considerations such as last stage blade flutter and water droplet erosion, and last stage guide design. The mechanical design includes finite element stress and dynamic analysis, appropriate selection of the blade material, the coupling of the LSB with the rotor and the design of the LSB snubber and shroud. Experimental measurements form a key part of the product validation, from both the mechanical reliability and performance points of view.


Author(s):  
Kai Cheng ◽  
Zeying Peng ◽  
Gongyi Wang ◽  
Xiaoming Wu ◽  
Deqi Yu

In order to meet the high economic requirement of the 3rd generation Pressurized Water Reactor (PWR) or Boiling Water Reactor (BWR) applied in currently developing nuclear power plants, a series of half-speed extra-long last stage rotating blades with 26 ∼ 30 m2 nominal exhaust annular area is proposed, which covers a blade-height range from 1600 mm to 1900 mm. It is well known that developing an extra long blade is a tough job involving some special coordinated sub-process. This paper is dedicated to describe the progress of creating a long rotating blade for a large scaled steam turbine involved in the 3rd generation nuclear power project. At first the strategy of how to determine the appropriate height for the last-stage-rotating-blade for the steam turbine is provided. Then the quasi-3D flow field quick design method for the last three stages in LP casing is discussed as well as the airfoil optimization method. Furthermore a sophisticated blade structure design and analyzing system for a long blade is introduced to obtain the detail dimension of the blade focusing on the good reliability during the service period. Thus, except for CAD and experiment process, the whole pre-design phase of the extra-long turbine blade is presented which is regarded as an assurance of the operation efficiency and reliability.


Author(s):  
Zoe Burton ◽  
Grant Ingram ◽  
Simon Hogg

The exhaust hood of a steam turbine is a vital area of turbomachinery research its performance strongly influences the power output of the last stage blades. It is well known that accurate CFD simulations are only achieved when the last stage blades are coupled to the exhaust hood to capture the strong interaction. This however presents challenges as the calculation size grows rapidly when the full annulus is calculated. The size of the simulation means researchers are constantly searching of methods to reduce the computational effort without compromising solution accuracy. This work uses a novel approach, by coupling the last stage blades and exhaust hood by the Non-Linear Harmonic Method, a technique widely used to reduce calculation size in high pressure turbine blades and axial compressors. This has been benchmarked against the widely adopted Mixing Plane method. The test case used is the Generic Geometry, a representative exhaust hood and last stage blade geometry that is free from confidentiality and IP restrictions and for which first calculations were presented at last year’s conference [1]. The results show that the non-uniform exhaust hood inlet flow can be captured using the non-liner harmonic method, an effect not previously achievable with single passage coupled calculations such as the mixing plane approach. This offers a significant computational saving, estimated to be a quarter of the computation time compared with alternative methods of capturing the asymmetry with full annulus frozen rotor calculations.


Author(s):  
Fang Li ◽  
Shunsen Wang ◽  
Juan Di ◽  
Zhenping Feng

Abstract In order to study the effect of initial surface roughness on water droplet erosion resistance of last stage blade substrate of steam turbine, eight 17-4PH samples were grounded and velvet polished by different mesh metallographic sandpaper to establish sample with different initial surface roughness. The water droplet erosion experiments were carried out in the highspeed jet water erosion experiment system, and the mass and micro-morphology of each sample were measured by using precision electronic balance and ultra-depth of field microscope respectively at each experimental stage, and the measurement of water erosion trace width and maximum water erosion depth were also completed at the same time. On the basis of experiments, LS-DYNA was used for numerical simulation to verify the reliability of experimental results again. Results show that the smoother the initial surface of sample, then the smaller the mass loss, the stronger its water erosion resistance. On the contrary, the rougher the initial surface of sample, the more severe the surface irregularity, the more times the water droplets concentrated at the lowest point of pit when water droplets flow laterally after impact is completed, thus accelerating the formation of initial crack and lateral expansion, the poorer the water erosion resistance of sample. At same water erosion time, the smoother the sample surface, the later the complete erosion trace appear, the narrower the water erosion trace width. However, the maximum water erosion depth of sample is not affected by the initial surface roughness. The numerical simulation results are in good agreement with the experimental results.


2020 ◽  
Vol 10 (14) ◽  
pp. 4883
Author(s):  
Junji Sakamoto ◽  
Naoya Tada ◽  
Takeshi Uemori ◽  
Hayato Kuniyasu

Turbine blades for thermal power plants are exposed to severe environments, making it necessary to ensure safety against damage, such as crack formation. A previous method detected internal cracks by applying a small load to a target member. Changes in the surface properties of the material were detected before and after the load using a digital holographic microscope and a digital height correlation method. In this study, this technique was applied in combination with finite element analysis using a 2D and 3D model simulating the turbine blades. Analysis clarified that the change in the surface properties under a small load varied according to the presence or absence of a crack, and elucidated the strain distribution that caused the difference in the change. In addition, analyses of the 2D model considering the material anisotropy and thermal barrier coating were conducted. The difference in the change in the surface properties and strain distribution according to the presence or absence of cracks was elucidated. The difference in the change in the top surface height distribution of the materials with and without a crack was directly proportional to the crack length. As the value was large with respect to the vertical resolution of 0.2 nm of the digital holographic microscope, the change could be detected by the microscope.


Author(s):  
T J Wang ◽  
S S Wang ◽  
Y B Pei ◽  
J Di ◽  
J W Wang ◽  
...  

Author(s):  
Dennis Toebben ◽  
Tobias Burgard ◽  
Sebastian Berg ◽  
Manfred Wirsum ◽  
Liu Pei ◽  
...  

Abstract Combined cycle power plants (CCPP) have many advantages compared to other fossil power plants: high efficiency, flexible operation, compact design, high potential for combined heat and power (CHP) applications and fewer emissions. However, fuel costs are relatively high compared to coal. Nevertheless, major qualities such as high operation flexibility and low emissions distinctly increase in relevance in the future, due to rising power generation from renewable energy sources. An accelerated start-up procedure of CCPPs increases the flexibility and reduces the NOx-emissions, which are relatively high in gas turbine low load operation. Such low load operation is required during a cold start of a CCPP in order to heat up the steam turbine. Thus, a warm-keeping of the thermal-limiting steam turbine results in an accelerated start-up times as well as reduced NOx-emissions and lifetime consumption. This paper presents a theoretical analysis of the potential of steam turbine warm-keeping by means of hot air for a typical CCPP, located in China. In this method, the hot air passes through the steam turbine while the power plant is shut off which enables hot start conditions at any time. In order to investigate an improved start-up procedure, a physical based simplified model of the water-steam cycle is developed on the basis of an operation data set. This model is used to simulate an improved power plant start-up, in which the steam turbine remains hot after at least 120 hours outage. The results show a start-up time reduction of approximately two-thirds in comparison to a conventional cold start. Furthermore, the potential of steam turbine warm-keeping is discussed with regards to the power output, NOx-emissions, start-up costs and lifetime consumption.


Sign in / Sign up

Export Citation Format

Share Document