scholarly journals Effect of thermal cycles on the microstructure and mechanical properties of cold-resistant steel 09CrNi2MoCu during laser deposition

2021 ◽  
Vol 2077 (1) ◽  
pp. 012012
Author(s):  
R Mendagaliyev ◽  
O G Klimova-Korsmik ◽  
S Y Ivanov ◽  
K D Babkin ◽  
A M Vildanov

Abstract The formation of microstructure features of cold-resistant bainite-martensite steel 09CrNi2MoCu has been investigated. Thermal cycles during direct laser deposition were studied. The thermal cycles at different points of the deposited samples were investigated. The thermal cycles and CCT diagrams on microstructure formation and mechanical properties have been analyzed. The numerical calculation of the three-dimensional thermal conductivity problem by the finite element method is carried out. The received data of experimentally measured thermal cycles and the calculated data have shown good coincidence of temperature values. On the basis of the obtained data the calculated dependence of inter-layer temperature at depositing the sample with and without a pause is given. The microstructure and mechanical properties of the samples in the initial state and after heat treatment have been studied and compared with traditional hot rolling. The microstructure features at different pauses between passes in different parts of the obtained samples were revealed. The effect on static tensile and impact toughness at -40°C in the bred and heat-treated state was investigated.

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7393
Author(s):  
Ruslan Mendagaliyev ◽  
Oleg Zotov ◽  
Rudolf Korsmik ◽  
Grigoriy Zadykyan ◽  
Nadezhda Lebedeva ◽  
...  

The study of the formation of microstructural features of low-alloy bainite-martensitic steel 09CrNi2MoCu are of particular interest in additive technologies. In this paper, we present a study of cold-rolled samples after direct laser deposition (DLD). We investigated deposited samples after cold plastic deformation with different degrees of deformation compression (50, 60 and 70%) of samples from steel 09CrNi2MoCu. The microstructure and mechanical properties of samples in the initial state and after heat treatment (HT) were analyzed and compared with the samples obtained after cold rolling. The effect on static tensile strength and impact toughness at −40 °C in the initial state and after cold rolling was investigated. The mechanical properties and characteristics of fracture in different directions were determined. Optimal modes and the degree of cold rolling deformation compression required to obtain balanced mechanical properties of samples obtained by additive method were determined. The influence of structural components and martensitic-austenitic phase on the microhardness and mechanical properties of the obtained samples was determined.


2015 ◽  
Vol 60 (4) ◽  
pp. 2529-2534
Author(s):  
B. Kalandyk ◽  
R. Zapała ◽  
J. Kasińska ◽  
M. Wróbel ◽  
M. Balicki

The article presents the microstructure and mechanical properties of cast duplex stainless steel type 23Cr-5Mn-2Ni-3Mo. It has been shown that the structure of the tested cast steel is composed of ferrite enriched in Cr, Mo and Si, and austenite enriched in Mn and Ni. In the initial state, at the interface, precipitates rich in Cr and Mo were present. A high carbon content (0.08%C) in this cast steel indicates that probably those were complex carbides of the M23C6type and/or σ phase. Studies have proved that the solution annealing conducted at 1060°C was not sufficient for their full dissolution, while at the solutioning temperature of 1150°C, the structure of the tested material was composed of ferrite and austenite.Partial replacement of Ni by two other austenite-forming elements, which are Mn and N, has ensured obtaining mechanical properties comparable to cast duplex 24Cr-5Ni-3Mo steel of the second generation. Basing on the results of static tensile test, a twice higher yield strength was proved to be obtained, compared to the cast austenitic 18Cr-9Ni and 19Cr-11Ni-2Mo steel commonly used in the foundry industry. In addition to the high yield strength (YS = 547 ÷ 572 MPa), the tested cast steel was characterized by the following mechanical properties: UTS = 731 ÷ 750 MPa, EL = 21 ÷ 29.5%, R.A. = 43 ÷ 52%, hardness 256 ÷ 266 HB. Fractures formed in mechanical tests showed ductile-brittle character.


2015 ◽  
Vol 46 (7) ◽  
pp. 3276-3286 ◽  
Author(s):  
S. K. Chaudhury ◽  
D. Apelian ◽  
P. Meyer ◽  
D. Massinon ◽  
J. Morichon

2013 ◽  
Vol 2 (1) ◽  
pp. 20120033
Author(s):  
R. N. Singh ◽  
A. K. Bind ◽  
J. B. Singh ◽  
J. K. Chakravartty ◽  
V. Thomas Paul ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document