scholarly journals Microstructure and Mechanical Properties of High-Alloyed 23Cr-5Mn-2Ni-3Mo Cast Steel / Mikrostruktura I Właściwości Mechaniczne Wysokostopowego Staliwa 23Cr-5Mn-2Ni-3Mo

2015 ◽  
Vol 60 (4) ◽  
pp. 2529-2534
Author(s):  
B. Kalandyk ◽  
R. Zapała ◽  
J. Kasińska ◽  
M. Wróbel ◽  
M. Balicki

The article presents the microstructure and mechanical properties of cast duplex stainless steel type 23Cr-5Mn-2Ni-3Mo. It has been shown that the structure of the tested cast steel is composed of ferrite enriched in Cr, Mo and Si, and austenite enriched in Mn and Ni. In the initial state, at the interface, precipitates rich in Cr and Mo were present. A high carbon content (0.08%C) in this cast steel indicates that probably those were complex carbides of the M23C6type and/or σ phase. Studies have proved that the solution annealing conducted at 1060°C was not sufficient for their full dissolution, while at the solutioning temperature of 1150°C, the structure of the tested material was composed of ferrite and austenite.Partial replacement of Ni by two other austenite-forming elements, which are Mn and N, has ensured obtaining mechanical properties comparable to cast duplex 24Cr-5Ni-3Mo steel of the second generation. Basing on the results of static tensile test, a twice higher yield strength was proved to be obtained, compared to the cast austenitic 18Cr-9Ni and 19Cr-11Ni-2Mo steel commonly used in the foundry industry. In addition to the high yield strength (YS = 547 ÷ 572 MPa), the tested cast steel was characterized by the following mechanical properties: UTS = 731 ÷ 750 MPa, EL = 21 ÷ 29.5%, R.A. = 43 ÷ 52%, hardness 256 ÷ 266 HB. Fractures formed in mechanical tests showed ductile-brittle character.

2012 ◽  
Vol 535-537 ◽  
pp. 601-604
Author(s):  
Wen Hao Zhou ◽  
Hui Guo ◽  
Cheng Jia Shang

The influence of tempering temperature on the microstructure and mechanical properties of low carbon low alloy steel was investigated. The results show that tempering temperature has considerable influence on both yield strength and tensile strength. With the increase in tempering temperature, the yield strength increases first and then decreases after it reaches the highest point at 600°C with a strength of 843MPa, while the tensile strength decreases fastly from 550°C to 650°C and keeps stable after increasing drastically at 720°C. The yield ratio is about 0.60 except at 600°C and 650°C with a high yield ratio of 0.90, while the total elongation has little change. It is concluded that the major change of mechanical properties after tempering has a connection with the decomposition of M/A(martensite/austenite) islands, the recovery of dislocations and the precipitation of alloy elements.


2021 ◽  
Vol 2077 (1) ◽  
pp. 012012
Author(s):  
R Mendagaliyev ◽  
O G Klimova-Korsmik ◽  
S Y Ivanov ◽  
K D Babkin ◽  
A M Vildanov

Abstract The formation of microstructure features of cold-resistant bainite-martensite steel 09CrNi2MoCu has been investigated. Thermal cycles during direct laser deposition were studied. The thermal cycles at different points of the deposited samples were investigated. The thermal cycles and CCT diagrams on microstructure formation and mechanical properties have been analyzed. The numerical calculation of the three-dimensional thermal conductivity problem by the finite element method is carried out. The received data of experimentally measured thermal cycles and the calculated data have shown good coincidence of temperature values. On the basis of the obtained data the calculated dependence of inter-layer temperature at depositing the sample with and without a pause is given. The microstructure and mechanical properties of the samples in the initial state and after heat treatment have been studied and compared with traditional hot rolling. The microstructure features at different pauses between passes in different parts of the obtained samples were revealed. The effect on static tensile and impact toughness at -40°C in the bred and heat-treated state was investigated.


2019 ◽  
Vol 8 (4) ◽  
pp. 1
Author(s):  
Bárbara Ferreira de Oliveira ◽  
Michel Picanço Oliveira ◽  
Luis Augusto Hernandez Terrones ◽  
Márcia Giardinieri de Azevedo ◽  
Leonardo Barbosa Godefroid

This paper presents a study on the microstructure and mechanical properties of a microalloyed HSLA steel solidified by continuous casting process and annealed at 1100 °C for 1 hour. The techniques of confocal microscopy, scanning electron microscopy and hardness, tensile and Charpy mechanical tests were used. The results of this research showed that the microstructure of the sample in the as-received condition was mainly composed of acicular ferrite and aggregates of ferrite and carbides. Non-metallic inclusion characterization of as-cast steel showed that calcium content was not enough to modify the morphology of some aluminates. After thermal treatment, the initial microstructure was transformed into polygonal ferrite and pearlite. In both conditions, different types of precipitates were found, which were classified according to their distribution in the microstructure. The steel with solidification structure showed a higher tensile strength, but its application would be unlikely in components that require good impact strength.


2021 ◽  
Vol 225 ◽  
pp. 01011
Author(s):  
Marina Panchenko ◽  
Eugeny Melnikov ◽  
Valentina Moskvina ◽  
Sergey Astafurov ◽  
Galina Maier ◽  
...  

A comparative study of the mechanical properties, fracture mechanisms and hydrogen embrittlement peculiarities was carried out using the specimens of austenitic CrNi steel produced by two different methods: wire-feed electron beam additive manufacturing and conventional casting followed by solid-solution treatment. Hydrogen-induced reduction of ductility and the increase in the yield strength are observed in steel specimens produced by both methods. Despite hydrogen embrittlement index is comparable in them, the increase in the yield strength after hydrogen-charging is different: 25 MPa for cast steel and 175 MPa for additively manufactured steel. This difference is associated with the peculiarities of phase composition and phase distribution in steels produced by different methods.


2020 ◽  
Vol 405 ◽  
pp. 379-384
Author(s):  
Joanna Borowiecka-Jamrozek ◽  
Jan Lachowski

The main purpose of this work was to determine the effect of the powder composition on the microstructure and properties of iron-based sinters used as a matrix in diamond tools. The Fe-Cu-Ni sinters obtained from a mixture of ground powders were used for experiments. The influence of manufacturing process parameters on the microstructure and mechanical properties of sinters was investigated. Sintering was performed using hot-pressing technique in a graphite mould. The investigations of obtained sinters included: density, hardness, static tensile test, X-ray diffraction analysis, microstructure and fracture surface observations. The obtained results indicate that the produced sinters have good plasticity and relatively high hardness.


2021 ◽  
Vol 1016 ◽  
pp. 1739-1746
Author(s):  
Yan Mei Li ◽  
Shu Zhan Zhang ◽  
Zai Wei Jiang ◽  
Sheng Yu ◽  
Qi Bin Ye ◽  
...  

The effect of tempering time on the microstructure and mechanical properties of SA738 Gr.B nuclear power steel was studied using SEM, TEM and thermodynamic software, and its precipitation and microstructure evolution during tempering were clarified. The results showed that SA738 Gr.B nuclear power steel has better comprehensive mechanical properties after tempering at 650 °C for 1h. With the extension of the tempering time, M3C transformed into M23C6 with increasing size, which affected the yield strength and impact energy. When the tempering time is 8h ~ 10h, due to the transformation of M3C to M23C6, the composition of matrix around the carbide changed, causing the temperature of Ac1 dropped, forming twin-martensite which deteriorated the impact toughness of the steel.


2019 ◽  
Vol 944 ◽  
pp. 64-72
Author(s):  
Qing Feng Yang ◽  
Cun Juan Xia ◽  
Ya Qi Deng

Bulky sample was made by using TIG wire and arc additive manufacturing (WAAM) technology, in which Ф1.6 mm filler wire of in-situ TiB2/Al-Si composites was selected as deposition metal, following by T6 heat treatment. The microstructure and mechanical properties of the bulky sample before and after heat treatment were analyzed. Experimental results showed that the texture of the original samples parallel to the weld direction and perpendicular to the weld direction was similar consisting of columnar dendrites and equiaxed crystals. After T6 heat treatment, the hardness of the sample was increased to 115.85 HV from 62.83 HV, the yield strength of the sample was 273.33 MPa, the average tensile strength was 347.33 MPa, and the average elongation after fracture was 7.96%. Although pore defects existed in the fracture, yet the fracture of the sample was ductile fracture.


Sign in / Sign up

Export Citation Format

Share Document