scholarly journals Research on Topology and Control System of High Power Grid Simulator

2021 ◽  
Vol 2083 (3) ◽  
pp. 032063
Author(s):  
Houxiang Li ◽  
Yongming Zhang ◽  
Hongyu Zhai

Abstract Grid simulator can simulate the output of various types of power grid failure to test wind power grid-side equipment, in the design of high-power grid simulator, due to the switching frequency restrictions, will affect the control bandwidth, resulting in the power grid simulator system performance decline. Therefore, the modular multi-level converter (MMC) with higher equivalent switching frequency is used on the inverter side of the grid simulator, and the bridge arm circulation suppression strategy based on the second-order generalized integrator (SOGI) and vector scale integral (VPI) resonant controller is proposed for the internal bridge arm circulation of the converter. Finally, based on RT-LAB, the network simulator controller hardware in the ring (CHIL) experimental platform is built and experimented, the experimental results show that the design of high-power power grid simulator system can simulate the output to obtain the required grid failure.

2014 ◽  
Vol 667 ◽  
pp. 383-389
Author(s):  
Yu Xiong ◽  
Yu Ling Li ◽  
Yan Ping Guo ◽  
Bo Yang

A novel topology for efficient utilization of parallel inverters as current source active power filter (APF) for high-power applications is presented and analyzed. The proposed technique operates the master inverter with high-power low-switching-frequency devices to compensate the low-order large-amplitude current harmonic components and the slave inverter with low-power high-switching-frequency devices to compensate the high-order small-amplitude current harmonic components. This paper discusses the operating principle, main circuit and control system design. Simulation and experimental results are provided to demonstrate the viability of the scheme.


Author(s):  
Chethan Parthasarathy ◽  
Hossein Hafezi ◽  
Hannu Laaksonen

AbstractLithium-ion battery energy storage systems (Li-ion BESS), due to their capability in providing both active and reactive power services, act as a bridging technology for efficient implementation of active network management (ANM) schemes for land-based grid applications. Due to higher integration of intermittent renewable energy sources in the distribution system, transient instability may induce power quality issues, mainly in terms of voltage fluctuations. In such situations, ANM schemes in the power network are a possible solution to maintain operation limits defined by grid codes. However, to implement ANM schemes effectively, integration and control of highly flexible Li-ion BESS play an important role, considering their performance characteristics and economics. Hence, in this paper, an energy management system (EMS) has been developed for implementing the ANM scheme, particularly focusing on the integration design of Li-ion BESS and the controllers managing them. Developed ANM scheme has been utilized to mitigate MV network issues (i.e. voltage stability and adherence to reactive power window). The efficiency of Li-ion BESS integration methodology, performance of the EMS controllers to implement ANM scheme and the effect of such ANM schemes on integration of Li-ion BESS, i.e. control of its grid-side converter (considering operation states and characteristics of the Li-ion BESS) and their coordination with the grid side controllers have been validated by means of simulation studies in the Sundom smart grid network, Vaasa, Finland.


2014 ◽  
Vol 672-674 ◽  
pp. 1012-1015
Author(s):  
He Zhu ◽  
Da Tian Xu ◽  
Hao Ran Zhao

Based on the mathematical model of the PWM converter, control strategy of the grid-side converter directed by the grid voltage and control strategy of the rotor-side converter directed by the stator flux were established combining the vector control theory. The method using the nonlinear simplex algorithm to optimize the PI control parameters of the DFIG unit was first proposed, optimization results proved that this method had good practicality and robustness.


Sign in / Sign up

Export Citation Format

Share Document