scholarly journals Simulation study on pitch system of floating wind turbine

2021 ◽  
Vol 2083 (4) ◽  
pp. 042070
Author(s):  
Dianhui Chen ◽  
Jianguo Li ◽  
Xuanyu Hong ◽  
Diankai Chen

Abstract Due to the complex sea conditions, floating wind turbines produce unbalanced loads. Firstly, this paper will take NERL-5MW floating wind turbine as the model, and apply brainstorming algorithm (BSO) to the independent pitch system based on PID azimuth weight coefficient. Then, a joint simulation will be carried out in OpenFAST-Matlab/Simulink to study its impact on the load of floating wind turbine. Finally, the simulation results reveal that compared with the independent pitch system based on PID azimuth weight coefficient, the proposed method can reduce the load of the floating platform to a certain extent.

Author(s):  
Simone Di Carlo ◽  
Alessandro Fontanella ◽  
Alan Facchinetti ◽  
Sara Muggiasca ◽  
Federico Taruffi ◽  
...  

Abstract The scope of this work is to investigate if and how it is possible to estimate the incident wave elevation on a floating wind turbine, with the purpose of improved control strategies. A Kalman based algorithm is proposed, which receives as input the rigid motions of the floater and estimates the wave elevation hitting the floating platform. The structure of the observer is described and the estimator is tested numerically on the OC3-Hywind platform coupled with the 5-MW reference wind turbine from NREL. Limitations to the estimation procedure are discussed. Finally the algorithm is tested on experimental data coming from a wave basin experimental campaign on a floating wind turbine model. The algorithm still needs improvements, but results are encouraging in the development of this technology.


Author(s):  
Pauline Louazel ◽  
Daewoong Son ◽  
Bingbin Yu

Abstract During the shutdown of a wind turbine, the turbine blades rotate from their typical operating angle to their typical idling angle (approximately 90 degrees) at a specific speed, called the blade pitch rate. This operation leads to rapid loss of thrust force on the turbine resulting in a corresponding heel response of the floating structure. This rapid variation of loads at the turbine also leads to large nacelle accelerations which are transferred to the bottom of the tower and consequently to the floating structure, making the turbine shutdowns, and specifically emergency shutdowns, of significance in the design and certification of the turbine, tower and floating structure. In case of an emergency shutdown (for instance due to a grid loss), the blades typically pitch from 0 degree to 90 degrees in approximately 20–35 seconds, whereas this time period can be more than 100 seconds in the case of a normal shutdown [6]. For fixed-bottom wind turbines, increasing the blade pitch rate leads to an increase of instantaneous loads at the nacelle and tower, leading to the emergency shutdown pitch rate being usually chosen to be as low as possible. In the case of a floating wind turbine, however, water/platform interaction effects such as wave induced damping on the floating platform, challenge this approach. Indeed, increasing the blade pitch rate can increase the effect of wave-induced damping on the floater and therefore reduce the loads on the overall structure. On the other hand, reducing the blade pitch rate during an emergency shutdown can reduce this damping effect and increase those loads, meaning that an optimal blade pitch rate for a fixed bottom turbine is not necessarily optimal for a floating wind turbine. This paper will examine the behavior of a floating offshore semi-submersible platform, the WindFloat, during turbine shutdown operations, with an emphasis on the blade pitch rate during an emergency shutdown.


Author(s):  
Hideyuki Suzuki ◽  
Masaru Kurimoto ◽  
Yu Kitahara ◽  
Yukinari Fukumoto

A wide range of platform types have been investigated for a floating wind turbine. Most of the research projects on a floating wind turbine assume that a land based wind turbine is to be installed on a platform with minimum modification to reduce the overall cost. For this reason, allowable limit of a motion of wind turbine is limited to lower value, for example, five degrees for static inclination and one to two degrees for pitching motion. So far analysis and design of motion characteristics of the platform have been main research concern. One key research area less focused is floating platform related risk. If the wind energy would be one of the major sources of power supply, wind farms which are comprised of large number of floating wind turbines must be deployed in the ocean. Wind turbines will be closely spaced in a wind farm so that installation cost should be minimized. In such an arrangement, a wind turbine accidentally started drifting has some possibility to collide or contact with the moorings of neighboring wind turbines and might cause progressive drifting of wind turbines. This paper present investigation of scenario of progressive drifting of floating wind turbines and evaluate risk of the scenario. Quantitative risk of several arrangements of wind farms is estimated. Effect of arrangement of wind turbines in a wind farm and safety factor used in design moorings is discussed.


Author(s):  
Ryan Bezzina ◽  
Tonio Sant ◽  
Daniel Micallef

Abstract Significant research in the field of Floating Offshore Wind Turbine (FOWT) rotor aerodynamics has been documented in literature, including validated aerodynamic models based on Blade Element Momentum (BEM) and vortex methods, amongst others. However, the effects of platform induced motions on the turbine wake development downstream of the rotor plane or any research related to such areas is rather limited. The aims of this paper are two-fold. Initially, results from a CFD-based Actuator Disc (AD) code for a fixed (non-surging) rotor are compared with those obtained from a Blade Element Momentum (BEM) theory, as well as previously conducted experimental work. Furthermore, the paper also emphasises the effect of tip speed ratio (TSR) on the rotor efficiency. This is followed by the analysis of floating wind turbines specifically in relation to surge displacement, through an AD technique implemented in CFD software, ANSYS Fluent®. The approach couples the Blade Element Theory (BET) for estimating rotating blade loads with a Navier Stokes solver to simulate the turbine wake. With regards to the floating wind turbine cases, the code was slightly altered such that BET was done in a transient manner i.e. following sinusoidal behaviour of waves. The AD simulations were performed for several conditions of TSRs and surge frequencies, at a constant amplitude. Similar to the fixed rotor analysis, significant parameters including thrust and power coefficients, amongst others, were studied against time and surge position. The floating platform data extracted from the AD approach was compared to the non-surging turbine data obtained, to display platform motion effects clearly. Data from hot wire near wake measurements and other simulation methods were also consulted.


2021 ◽  
pp. 0309524X2110287
Author(s):  
Djalloul Achour ◽  
Mohamed Kesraoui

In this paper a new wind pumping system is developed. This system is hybrid between mechanical and electrical wind pumping systems. It combines the advantages of these two systems. The developed wind pumping system consists of wind turbine, special gearbox, DC machine, battery bank, and water pump. Three wind pumping systems have been modeled and then simulated by using MATLAB/SIMULINK. The simulation results show that the developed wind pumping system has the best performance. Thus, the extracted water volume of the developed system is 984.1 m3, where mechanical and electrical systems extract 737.2 and 642.9 m3 respectively.


Author(s):  
Xin Shen ◽  
Ping Hu ◽  
Jinge Chen ◽  
Xiaocheng Zhu ◽  
Zhaohui Du

The aerodynamic performance of floating platform wind turbines is much more complex than fixed-base wind turbines because of the flexibility of the floating platform. Due to the extra six degrees-of-freedom of the floating platform, the inflow of the wind turbine rotors is highly influenced by the motions of the floating platform. It is therefore of interest to study the unsteady aerodynamics of the wind turbine rotors involved with the interaction of the floating platform induced motions. In the present work, a lifting surface method with a free wake model is developed for analysis of the unsteady aerodynamics of wind turbines. The aerodynamic performance of the NREL 5 MW floating wind turbine under the prescribed floating platform pitch motion is studied. The unsteady aerodynamic loads, the transient of wind turbine states, and the instability of the wind turbine wakes are discussed in detail.


Author(s):  
Andrew C. Young ◽  
Steve Hettick ◽  
Habib J. Dagher ◽  
Anthony M. Viselli ◽  
Andrew J. Goupee

In May of 2013 the VolturnUS 1:8 floating semi-submersible wind turbine was successfully deployed off the coast of Castine, Maine, making the unit the first grid connected offshore turbine in the United States. The VolturnUS 1:8 structure features a 20 kW turbine, a post-tensioned and reinforced concrete semi-submersible base and a fiber reinforced plastic (FRP) tower (E-glass and polyester resin). The VolturnUS 1:8 structure is a geometrically 1:8-scale of a 6 MW floating turbine design and is used to demonstrate the feasibility of both the concrete base and FRP tower and validate the performance of the structure in a scaled environment. Data collected from the deployed 1:8-scale structure will be used for modeling and simulating the behavior of the system at full-scale. The effort was led by the University of Maine’s Advanced Structures and Composites Center (UMaine) and a consortium of industry partners, including FRP manufacturer Ershigs, Inc. An overview of the process and methodology used in the analysis, design and testing of the 1:8 scale FRP floating wind turbine tower is presented. The use of an FRP tower on a floating wind turbine platform offers the benefits of reduced tower mass and maintenance requirements and has the potential to further reduce hull mass by lowering the global center of gravity of the structure. An FRP tower for use on the UMaine semi-submersible concrete VolturnUS 1:8 platform was developed that meets all strength and serviceability criteria and is robust enough to withstand the loading from both wind and waves. An overview of the tower loads analysis and FAST modeling, tower structural design, structural proof testing and preliminary analysis of performance are presented. The VolturnUS 1:8 wind turbine tower is the first time FRP materials have been used in an offshore wind tower application. Further, the methodologies and procedures that were developed in the design of the pilot-scale tower are directly applicable to the design and analysis of composite wind turbine towers at the full-scale level. These “lessons learned” are already in use as Ershigs and UMaine work to design a full-scale composite tower over 80 meters tall for use on the VolturnUS platform with a 6MW wind turbine. The results of the 1:8-scale program demonstrate the successful use of an FRP wind turbine tower on a floating platform and highlights the potential for the use of an FRP tower at the full-scale (6 MW) level.


Author(s):  
Matthew Hall ◽  
Javier Moreno ◽  
Krish Thiagarajan

This paper presents performance requirements for a real-time hybrid testing system to be suitable for scale-model floating wind turbine experiments. In the wave basin, real-time hybrid testing could be used to replace the model wind turbine with an actuation mechanism, driven by a wind turbine simulation running in parallel with, and reacting to, the experiment. The actuation mechanism, attached to the floating platform, would provide the full range of forces normally provided by the model wind turbine. This arrangement could resolve scaling incompatibilities that currently challenge scale-model floating wind turbine experiments. In this paper, published experimental results and a collection of full-scale simulations are used to determine what performance specifications such a system would need to meet. First, an analysis of full-scale numerical simulations and published 1:50-scale experimental results is presented. This analysis indicates the required operating envelope of the actuation system in terms of displacements, velocities, accelerations, and forces. Next, a sensitivity study using a customization of the floating wind turbine simulator FAST is described. Errors in the coupling between the wind turbine and the floating platform are used to represent the various inaccuracies and delays that could be introduced by a real-time hybrid testing system. Results of this sensitivity study indicate the requirements — in terms of motion-tracking accuracy, force actuation accuracy, and system latency — for maintaining an acceptable level of accuracy in 1:50-scale floating wind turbine experiments using real-time hybrid testing.


Author(s):  
Timothée Perdrizet ◽  
Jean-Christophe Gilloteaux ◽  
David Teixeira ◽  
Gilles Ferrer ◽  
Loïc Piriou ◽  
...  

The present paper describes the validation and the modeling capabilities of a new fully coupled floating wind turbine simulator based on DeepLines™ software. A first validation, based on code comparison with NREL-FAST software, is presented and shows very good correlation on a rigidly founded 5MW wind turbine in various wind conditions despite the different modeling techniques and assumptions of the two softwares. This benchmark, in addition to the extensive validation on various offshore projects, makes us confident on DeepLines capabilities to assess founded and floating wind turbine behaviour in a complex offshore environment. Furthermore, some simulation results on jacket and floating founded wind turbines, defined in the frame of IEA OC4 project, are presented and highlight the versatility of our simulator to perform offshore and floating wind turbine optimal design.


Sign in / Sign up

Export Citation Format

Share Document