scholarly journals Design and Implementation of AGU based FFT Pipeline Architecture

2021 ◽  
Vol 2089 (1) ◽  
pp. 012070
Author(s):  
G. Prasanna Kumar ◽  
Maturi Sarath Chandra ◽  
K Shiva Prasanna ◽  
M Mahesh

Abstract Present it is most needful task to get various applications with parallel computations by using a Fast Fourier Transform (FFT) and the derived outputs should be in regular format. This can be achieved by using an advanced technique called Multipath delay commutator (MDC) Pipelining FFT processor and this processor will be capable to perform the computation of a different data streams at a time. In this paper the design and implementation of AGU based Pipelined FFT architecture is done Caluclation of a butterfly is done within 2 cycles by the instructions proposed. A Data Processing Unit (DPU) is employed in this pipeline architecture and supports the instructions & an FFT Adress Generation Unit (FAGU) caluclates butterfly input & output data adresses automatically. The DPU proposed sysyem requires less area compared to commericial DSP chips. Futhermore, the proposed FAGU reduces the number of FFT computation cycles. The FFT design architecture will have real data paths. With various FFT sizes, different radix & various parallesim levels, the FFT can be mapped to the pipeline architecture. The most attractive feature of the pipelined FFT architecture is it consists of bit reversal operation so it requires little number of registers and better throughput.

2018 ◽  
Vol 930 (12) ◽  
pp. 39-43 ◽  
Author(s):  
V.P. Savinikh ◽  
A.A. Maiorov ◽  
A.V. Materuhin

The article is a brief summary of current research results of the authors in the field of spatial modeling of air pollution based on spatio-temporal data streams from geosensor networks. The urban environment is characterized by the presence of a large number of different sources of emissions and rapidly proceeding processes of contamination spread. So for the development of an adequate spatial model is required to make measurements with a large spatial and temporal resolution. It is shown that geosensor network provide researchers with the opportunity to obtain data with the necessary spatio-temporal detail. The article describes a prototype of a geosensor network to build a detailed spatial model of air pollution in a large city. To create a geosensor in the prototype of the system, calibrated gas sensors for a nitrogen dioxide and carbon monoxide concentrations measurement were interfaced to the module, which consist of processing unit and communication unit. At present, the authors of the article conduct field tests of the prototype developed.


2016 ◽  
Vol 6 (2) ◽  
pp. 1-23 ◽  
Author(s):  
Surbhi Bhatia ◽  
Manisha Sharma ◽  
Komal Kumar Bhatia

Due to the sudden and explosive increase in web technologies, huge quantity of user generated content is available online. The experiences of people and their opinions play an important role in the decision making process. Although facts provide the ease of searching information on a topic but retrieving opinions is still a crucial task. Many studies on opinion mining have to be undertaken efficiently in order to extract constructive opinionated information from these reviews. The present work focuses on the design and implementation of an Opinion Crawler which downloads the opinions from various sites thereby, ignoring rest of the web. Besides, it also detects web pages which frequently undergo updation by calculating the timestamp for its revisit in order to extract relevant opinions. The performance of the Opinion Crawler is justified by taking real data sets that prove to be much more accurate in terms of precision and recall quality attributes.


1985 ◽  
Vol 21 (7) ◽  
pp. 725-732
Author(s):  
Michitaka KAMEYAMA ◽  
Tatsuo HIGUCHI ◽  
Junichi KONNO ◽  
Kaoru TAKASUKA

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6443
Author(s):  
Jinmoo Heo ◽  
Yongchul Jung ◽  
Seongjoo Lee ◽  
Yunho Jung

This paper presents the design and implementation results of an efficient fast Fourier transform (FFT) processor for frequency-modulated continuous wave (FMCW) radar signal processing. The proposed FFT processor is designed with a memory-based FFT architecture and supports variable lengths from 64 to 4096. Moreover, it is designed with a floating-point operator to prevent the performance degradation of fixed-point operators. FMCW radar signal processing requires windowing operations to increase the target detection rate by reducing clutter side lobes, magnitude calculation operations based on the FFT results to detect the target, and accumulation operations to improve the detection performance of the target. In addition, in some applications such as the measurement of vital signs, the phase of the FFT result has to be calculated. In general, only the FFT is implemented in the hardware, and the other FMCW radar signal processing is performed in the software. The proposed FFT processor implements not only the FFT, but also windowing, accumulation, and magnitude/phase calculations in the hardware. Therefore, compared with a processor implementing only the FFT, the proposed FFT processor uses 1.69 times the hardware resources but achieves an execution time 7.32 times shorter.


The demand for energy is increasing rapidly and, after a few years, it may surpass the available energy, which may lead the energy providers to increase the cost of energy consumption to compensate the cost for the production. This paper provides design and implementation details of a prototype big data application developed to help large buildings to automatically manage their energy consumption by setting energy consumption targets, collecting periodic energy consumption data, storing the data streams, displaying the energy consumption graphically in real-time, analyzing the consumption patterns, and generating energy consumption graphs and reports. The application is connected to Mongo NoSQL backend database to handle the large and continuously changing data. This big data energy consumption management system is expected to help the users in managing energy consumption by analyzing the patterns to see if it is within or above the desired consumption targets and displaying the data graphically.


2012 ◽  
Vol 4 (3) ◽  
pp. 63-84
Author(s):  
Jonathan Cazalas ◽  
Ratan K. Guha

The efficient processing of spatio-temporal data streams is an area of intense research. However, all methods rely on an unsuitable processor (Govindaraju, 2004), namely a CPU, to evaluate concurrent, continuous spatio-temporal queries over these data streams. This paper presents a performance model of the execution of spatio-temporal queries over the authors’ GEDS framework (Cazalas & Guha, 2010). GEDS is a scalable, Graphics Processing Unit (GPU)-based framework, employing computation sharing and parallel processing paradigms to deliver scalability in the evaluation of continuous, spatio-temporal queries over spatio temporal data streams. Experimental evaluation shows the scalability and efficacy of GEDS in spatio-temporal data streaming environments and demonstrates that, despite the costs associated with memory transfers, the parallel processing power provided by GEDS clearly counters and outweighs any associated costs. To move beyond the analysis of specific algorithms over the GEDS framework, the authors developed an abstract performance model, detailing the relationship of the CPU and the GPU. From this model, they are able to extrapolate a list of attributes common to successful GPU-based applications, thereby providing insight into which algorithms and applications are best suited for the GPU and also providing an estimated theoretical speedup for said GPU-based applications.


Author(s):  
Charles A. Wood

Recent and emerging technologies offer many opportunities for exploration and learning. These technologies allow learners (of any age) to work with real data, use authentic scientific instruments, explore immersive simulations and act as scientists. The capabilities soon to be available raise questions about the role of schools and do rely on directed learning traditionally supplied by teachers. The prevalence of new tools and data streams can transform society, not just kids, into a culture of learning.


Sign in / Sign up

Export Citation Format

Share Document