scholarly journals Obtaining the frequencies of Schenberg detector sphere using finite element modelling

2021 ◽  
Vol 2090 (1) ◽  
pp. 012161
Author(s):  
F S Bortoli ◽  
R N Duarte ◽  
R C Souza ◽  
N S Magalhaes ◽  
C Frajuca ◽  
...  

Abstract The resonant-mass gravitational wave detector SCHENBERG is a spherical detector that operates with a central frequency close to 3200 Hz and a bandwidth around 200 Hz. It has a spherical mass that works as an antenna whose weight is 1150 kg and is connected to the outer environment by a suspension system designed to attenuate local noise due to seism as well as other sources; the sphere is suspended by its center of mass. When a gravitational wave passes by the detector, the antenna is expected to vibrate. This motion should be monitored by six parametric microwave transducers whose output signals will be digitally analyzed. In order to determine the detector performance better, it is necessary to obtain the vibration frequencies of the sphere with a better precision. To achieve such a goal the sphere with the holes to mount the transducers and the central hole from which the sphere is suspended is simulated in a finite element method program when the gravity is applied to the sphere and the deformation is kept. After that the vibration normal modes of the sphere are calculated and they are compared to the experimental results.

1998 ◽  
Vol 13 (20) ◽  
pp. 1653-1665 ◽  
Author(s):  
JOHN ARGYRIS ◽  
CORNELIU CIUBOTARIU

In this letter we signalize the possibility of applying a quantum chaos as an element of high sensitivity which serves to detect small changes in length generated by gravitational waves. We propose the construction of a double-bar antenna with a coupling Josephson junction in its center-of-mass. In fact the new antenna is a single Josephson junction with massive bulk contacts, like a single-junction SQUID but with free ends. Computer experiments demonstrate that very small changes generated by the variation of the distance between the bulk plates of the junction capacitance will produce a variety of very different intermittency routes to chaos. A concrete numerical example illustrates the smallness of a quantum of chaos and thus the extraordinary sensitivity of the proposed method.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  

AbstractIn this perspective, we outline that a space borne gravitational wave detector network combining LISA and Taiji can be used to measure the Hubble constant with an uncertainty less than 0.5% in ten years, compared with the network of the ground based gravitational wave detectors which can measure the Hubble constant within a 2% uncertainty in the next five years by the standard siren method. Taiji is a Chinese space borne gravitational wave detection mission planned for launch in the early 2030 s. The pilot satellite mission Taiji-1 has been launched in August 2019 to verify the feasibility of Taiji. The results of a few technologies tested on Taiji-1 are presented in this paper.


2004 ◽  
Vol 21 (5) ◽  
pp. S1107-S1111 ◽  
Author(s):  
Carlos Frajuca ◽  
Kilder L Ribeiro ◽  
Luiz A Andrade ◽  
Odylio D Aguiar ◽  
Nadja S Magalhães ◽  
...  

2017 ◽  
Vol 26 (12) ◽  
pp. 1742005 ◽  
Author(s):  
R. R. Caldwell ◽  
C. Devulder ◽  
N. A. Maksimova

The dynamics of a gravitational wave propagating through a cosmic gauge field are dramatically different than in vacuum. We show that a gravitational wave acquires an effective mass, is birefringent, and its normal modes are a linear combination of gravitational waves and gauge field excitations, leading to the phenomenon of gravitational wave–gauge field oscillations. These surprising results provide an insight into gravitational phenomena and may suggest new approaches to a theory of quantum gravity.


1976 ◽  
Vol 33 (2) ◽  
pp. 665-680 ◽  
Author(s):  
H. Billing ◽  
W. Winkler

Author(s):  
Ioannis T. Georgiou

In this work, the nonlinear coupled dynamics of a sandwich structure with hexagonal honeycomb core are characterized in terms of Proper Orthogonal Decomposition modes. A high fidelity nonlinear finite element model is derived to describe geometric nonlinearity and displacement and rotation fields that govern the coupled dynamics. Contrary to equivalent continuum models used to predict vibration properties of lattice and sandwich structures, a high fidelity finite element model allows for a quite detailed description of the distributed complicated geometric nonlinearity of the core. It was found that the free dynamics excited by a blast load and the forced dynamics excited by a harmonic force posses POD modes which are localized in space and time. The processing of the simulated dynamics by the Time Discrete Proper Transform forms a means to study the nonlinear coupled dynamics of sandwich structures in the context of nonlinear normal modes of vibration and reduced order models.


2000 ◽  
Vol 71 (11) ◽  
pp. 4282 ◽  
Author(s):  
Michael E. Tobar ◽  
Clayton R. Locke ◽  
Eugene N. Ivanov ◽  
Ik Siong Heng ◽  
David G. Blair

Sign in / Sign up

Export Citation Format

Share Document