scholarly journals A Depth Map Generation Method for Path Planning of Mobile Robot

2021 ◽  
Vol 2095 (1) ◽  
pp. 012074
Author(s):  
Qiang He ◽  
Jiawei Yu

Abstract Recently, the unmanned mobile robots have received broad applications, such as industrial and security inspection, disinfection and epidemic prevention, warehousing logistics, agricultural picking, etc. In order to drive autonomously from departure to destination, an unmanned mobile robot mounts different sensors to collect information around it and further understand its surrounding environment based on the perceptions. Here we proposed a method to generate high-resolution depth map for given sparse LiDAR point cloud. Our method fits the point cloud into a 3D curve and projects LiDAR data onto the curve surface, and then we make appropriate interpolations of the curve and finally implement the Delaunay triangulation algorithm to all the data points on the 3D curve. The experimental results show that our approach can effectively improve the resolution of depth maps from sparse LiDAR measurements.

Robotica ◽  
2021 ◽  
pp. 1-26
Author(s):  
Meng-Yuan Chen ◽  
Yong-Jian Wu ◽  
Hongmei He

Abstract In this paper, we developed a new navigation system, called ATCM, which detects obstacles in a sliding window with an adaptive threshold clustering algorithm, classifies the detected obstacles with a decision tree, heuristically predicts potential collision and finds optimal path with a simplified Morphin algorithm. This system has the merits of optimal free-collision path, small memory size and less computing complexity, compared with the state of the arts in robot navigation. The modular design of 6-steps navigation provides a holistic methodology to implement and verify the performance of a robot’s navigation system. The experiments on simulation and a physical robot for the eight scenarios demonstrate that the robot can effectively and efficiently avoid potential collisions with any static or dynamic obstacles in its surrounding environment. Compared with the particle swarm optimisation, the dynamic window approach and the traditional Morphin algorithm for the autonomous navigation of a mobile robot in a static environment, ATCM achieved the shortest path with higher efficiency.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 546
Author(s):  
Zhenni Li ◽  
Haoyi Sun ◽  
Yuliang Gao ◽  
Jiao Wang

Depth maps obtained through sensors are often unsatisfactory because of their low-resolution and noise interference. In this paper, we propose a real-time depth map enhancement system based on a residual network which uses dual channels to process depth maps and intensity maps respectively and cancels the preprocessing process, and the algorithm proposed can achieve real-time processing speed at more than 30 fps. Furthermore, the FPGA design and implementation for depth sensing is also introduced. In this FPGA design, intensity image and depth image are captured by the dual-camera synchronous acquisition system as the input of neural network. Experiments on various depth map restoration shows our algorithms has better performance than existing LRMC, DE-CNN and DDTF algorithms on standard datasets and has a better depth map super-resolution, and our FPGA completed the test of the system to ensure that the data throughput of the USB 3.0 interface of the acquisition system is stable at 226 Mbps, and support dual-camera to work at full speed, that is, 54 fps@ (1280 × 960 + 328 × 248 × 3).


Author(s):  
Cheng-An Chien ◽  
Cheng-Yen Chang ◽  
Jui-Sheng Lee ◽  
Jia-Hou Chang ◽  
Jiun-In Guo

2021 ◽  
Vol 13 (19) ◽  
pp. 3796
Author(s):  
Lei Fan ◽  
Yuanzhi Cai

Laser scanning is a popular means of acquiring the indoor scene data of buildings for a wide range of applications concerning indoor environment. During data acquisition, unwanted data points beyond the indoor space of interest can also be recorded due to the presence of openings, such as windows and doors on walls. For better visualization and further modeling, it is beneficial to filter out those data, which is often achieved manually in practice. To automate this process, an efficient image-based filtering approach was explored in this research. In this approach, a binary mask image was created and updated through mathematical morphology operations, hole filling and connectively analysis. The final mask obtained was used to remove the data points located outside the indoor space of interest. The application of the approach to several point cloud datasets considered confirms its ability to effectively keep the data points in the indoor space of interest with an average precision of 99.50%. The application cases also demonstrate the computational efficiency (0.53 s, at most) of the approach proposed.


Author(s):  
M. Rothermel ◽  
N. Haala ◽  
D. Fritsch

Due to good scalability, systems for image-based dense surface reconstruction often employ stereo or multi-baseline stereo methods. These types of algorithms represent the scene by a set of depth or disparity maps which eventually have to be fused to extract a consistent, non-redundant surface representation. Generally the single depth observations across the maps possess variances in quality. Within the fusion process not only preservation of precision and detail but also density and robustness with respect to outliers are desirable. Being prune to outliers, in this article we propose a local median-based algorithm for the fusion of depth maps eventually representing the scene as a set of oriented points. Paying respect to scalability, points induced by each of the available depth maps are streamed to cubic tiles which then can be filtered in parallel. Arguing that the triangulation uncertainty is larger in the direction of image rays we define these rays as the main filter direction. Within an additional strategy we define the surface normals as the principle direction for median filtering/integration. The presented approach is straight-forward to implement since employing standard oc- and kd-tree structures enhanced by nearest neighbor queries optimized for cylindrical neighborhoods. We show that the presented method in combination with the MVS (Rothermel et al., 2012) produces surfaces comparable to the results of the Middlebury MVS benchmark and favorably compares to an state-of-the-art algorithm employing the Fountain dataset (Strecha et al., 2008). Moreover, we demonstrate its capability of depth map fusion for city scale reconstructions derived from large frame airborne imagery.


Sign in / Sign up

Export Citation Format

Share Document