scholarly journals Improving the System Efficiency of CHP in the Context of Increasing Requirements for the Maneuverability and Environmental Friendliness of Power Plants

2021 ◽  
Vol 2096 (1) ◽  
pp. 012088
Author(s):  
S S Beloborodov ◽  
A A Dudolin ◽  
E M Lisin ◽  
V O Kindra

Abstract New trends in the fight against climate change on the planet, suggesting a reduction in greenhouse gas emissions, are influencing the formation of a new structure of the electric power system. As the experience of the European Union shows, the active development of renewable energy sources affects the electrical modes of operation of power plants and in the future can lead to a decrease in electricity production in a highly efficient combined generation mode at CHPPs. Thus, there is an acute issue of finding a place for a CHP plant in the emerging power systems, in which generating equipment will be especially in demand, effectively operating in half-peak and peak modes to cover the daily load unevenness. The development and commissioning of a highly maneuverable GTU-CHPP, capable of operating in a combined generation mode with daily starts / stops, can significantly increase the efficiency of electricity generation in the peak part of the daily load schedule. The system effect of the commisionning of 10 GW of highly maneuverable GtU-CHPPs within the UES of Russia will reduce the consumption of fossil fuel by 19.6 million tce per year and CO2 and NOx emissions by 55 million tons and 24.7 thousand tons per year, respectively.

2013 ◽  
Vol 4 (2) ◽  
Author(s):  
Aleksandra Kanevče ◽  
Igor Tomovski ◽  
Ljubčo Kocarev

In this paper we analyze the impact of the renewable energy sources on the overall electric power system of the Republic of Macedonia. Specifically, the effect of the photovoltaic power plants is examined. For this purpose we developed an electricity production optimization model, based on standard network flow model. The renewable energy sources are included in the model of Macedonia based on hourly meteorological data. Electricity producers that exist in 2012 are included in the base scenario. Two more characteristic years are analyzed, i.e. 2015 and 2020. The electricity producers planned to be constructed in these two years (which include the renewable energy sources) are also included. The results show that the renewable energy sources introduce imbalance in the system when the minimum electricity production is higher than the electricity required by the consumers. But, in these critical situations the production from photovoltaic energy sources is zero, which means that they produce electricity during the peak load, and do not produce when the consumption is at minimum.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2056
Author(s):  
Anna Glazunova ◽  
Evgenii Semshikov ◽  
Michael Negnevitsky

To reduce the reliance on fossil fuel-based generation, many countries expand the use of renewable energy sources (RES) for electricity production. The stochastic and intermittent nature of such sources (i.e., wind and solar) poses challenges to the stable and reliable operation of the electric power system (EPS) and requires sufficient operational flexibility. With continuous and random changes in the EPS operational conditions, evaluating the system flexibility in a standardized manner may improve the robustness of planning and operating procedures. Therefore, the development of fast algorithms for determining system flexibility is a critical issue. In this paper, the flexibility of the EPS with high wind energy penetration is calculated in real time. In this context, the EPS flexibility is understood as the ability of the system to maintain a balance under irregular and short-term active power variations during a specified time by using the flexibility resources. The EPS flexibility calculation relies on a deterministic method developed to qualitatively and quantitatively assess the EPS readiness to changes in load. Accurate wind power forecasts and the observance of the electric circuit law when solving the optimization problem allow for determining the actual value of the EPS flexibility during a considered time.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6200
Author(s):  
Tomasz Popławski ◽  
Sebastian Dudzik ◽  
Piotr Szeląg ◽  
Janusz Baran

This article describes problems related to the operation of a virtual micro power plant at the Faculty of Electrical Engineering (FEE), Czestochowa University of Technology (CUT). In the era of dynamic development of renewable energy sources, it is necessary to create alternative electricity management systems for existing power systems, including power transmission and distribution systems. Virtual power plants (VPPs) are such an alternative. So far, there has been no unified standard for a VPP operation. The article presents components that make up the VPP at the FEE and describes their physical and logical structure. The presented solution is a combination of several units operating in the internal power grid of the FEE, i.e., wind turbines, energy storage (ES), photovoltaic panels (PV) and car charging stations. Their operation is coordinated by a common control system. One of the research goals described in the article is to optimize the operation of these components to minimize consumption of the electric energy from the external supply network. An analysis of data from the VPP management system was carried out to create mathematical models for prediction of the consumed power and the power produced by the PVs. These models allowed us to achieve the assumed objective. The article also presents the VPP data processing results in terms of detecting outliers and missing values. In addition to the issues discussed above, the authors also proposed to apply the Prophet model for short-term forecasting of the PV farm electricity production. It is a statistical model that has so far been used for social and business research. The authors implemented it effectively for technical analysis purposes. It was shown that the results of the PV energy production forecasting using the Prophet model are acceptable despite occurrences of missing data in the investigated time series.


2020 ◽  
Vol 216 ◽  
pp. 01139
Author(s):  
Yu.S. Vasilyev ◽  
V.V. Elistratov ◽  
I.G. Kudryasheva ◽  
M.M. Mukhammadiyev ◽  
B.U. Urishev

The possibilities of using shunting properties of HPP units, HAPS (Hydro-accumulating power system) for energy storage and redistribution, as well as Pump Station as a consumer of the regulator in night load dips to increase the reliability of the electric power system (EPS) in the conditions of the current increase in the share of non-nondestructive capacities in Russia and Uzbekistan and the implementation of programs for the development of renewable energy sources, primarily the construction of wind and solar power plants, were considered.


Electricity ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 403-422
Author(s):  
Hugo Algarvio

The ambitious targets of the European Union (EU) for a greater penetration of renewable energy sources (RES) in all areas of activity have led to power systems with growing levels of variable RES (VRES) all over the EU. Considering these targets, the EU countries presented their National Energy and Climate Plans (NECP) with their expected capacity until 2030. The NECPs considered a relevant increase in the VRES capacity and in some cases a decrease in the capacity of dispatchable power plants. VRES have near-zero marginal costs and increase the volatility of the net-load due to the stochastic profile of their production. These characteristics increase the need to maintain fast-response dispatchable power plants to guarantee the security of supply and also decrease market prices. Thus, governments promote externalities, as capacity mechanisms and other incentives to these players, guaranteeing their economic sustainability. This study presents the optimization of the non-RES thermal capacity of the Iberian power system by 2030, considering the least-cost algorithm. Considering a cooperative scenario between Portugal and Spain, it is possible to reduce the system costs by 17.40%, the curtailments quantity by 21.93%, the number of market-splitting hours by 43.26% and the dioxide carbon emissions by 4.76%.


2020 ◽  
Vol 18 (1) ◽  
pp. 17
Author(s):  
R. Reski Eka Putra ◽  
Susi Afriani ◽  
Nanda Putri Miefthawati ◽  
Marhama Jelita

ABSTRACTReliability of the electric power system and fulfil the certification of sustainable industries in the palm oil industry are offered by utilizing the potential of renewable energy sources as power plants. This research is aimed to analyze the technical and economic aspects of the Solar PV-Biogas power plant at PT. TBS. The method used in this research is hybrid parallel with the off grid network system. In manual calculations showed an optimal generating system consisting of an anaerobic digester with a lagoon capacity of 28,934.81 m3, 1,560 kW biogas generator, 4,040.22 kWp PV array, 2000 kW bidirectional inverter, and 10,125 units of batteries with capacity of 1,547Ah. Then the system is evaluated using HOMER Pro software with project lifetime of 20 years, and the total electricity production obtained during the life of the project is able to supply loads continuously with an average excess electricity about 25.23%/years of total production. Meanwhile, in the economic analysis of hybrid power plants require an initial investment (NPC) of Rp.233,553,169,589.30, with total CO2 emissions of POME 44,073.75 tons/year, then the cost of Certified Emission Reduction is obtained about Rp.6,611,062,500/year. The calculation of economic feasibility results in a Net Present Value of Rp.136.266.578.753, Payback Period of 13,8 years, and an Internal Rate of Return of 9,41%. Based on the result of techno-economic analysis in the research, it can be concluded that this hybrid generating system has the potential to be developed for study that is more detailed if it is to be implemented.Keywords: HOMER Pro, Off-grid, PT. TBS, Solar PV/Biogas, Techno-economic.


Author(s):  
Petro Lezhniuk ◽  
Olha Buslavets ◽  
Olena Rubanenko

This article considers the features of the development of renewable energy sources in electrical networks. The main changes in the functional properties of power systems, which include a significant reduction in electricity consumption, change in the structure of electricity consumption, rapid increase in the installed capacity of solar and wind power plants. Electricity consumption in 2020 is almost halved compared to 1990 (from 227 to 119 billion kWh) and as a consequence the share of semi-peak thermal generation, which gave the power system basic flexibility, has significantly decreased (from 71 % in 1990 to 35 % in 2020) and at the same time the share of nuclear generation, which operates in base mode, has increased (from 25 % to 51 %). In particular, consumption by industry with a stable load schedule, decreased (from 146 billion kWh (64 %) to 49 billion kWh (42 %)). At the same time, the demand for electricity by the households, whose consumption profile of which is characterized by significant daily unevenness and sensitivity to meteorological factors, has significantly increased (from 21 billion kWh (9 %) to 37 billion kWh (31 %)). Therefore, the article analyses the preconditions for the problem of flexible generation and explores possible ways to solve them. The optimal composition of electricity generation for Ukraine in the period 2021–2025 is proposed, which provides for the preservation and even increase by optimizing the repair campaign of the share of electricity production by nuclear power plants, the introduction of additional 2–2.5 GW of highly flexible generation and up to 2 GW storage systems (taking into account the pumped-storage power plant), as well as a gradual evolutionary decline in both installed capacity and electricity production by semi-peak coal-fired power plants and maintaining a policy of decarbonisation to ensure its own energy security. A comprehensive approach to compensating for the instability of renewable energy sources generation has been developed, which consists in minimizing the cost of power redundancy in various available ways. The problem of cost optimization for ways to compensate for the instability of renewable energy sources generation is solved by the method of criterion programming. The impact of each backup method on total costs is determined using sensitivity theory.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2862
Author(s):  
Mika Korkeakoski

Renewable Energy Sources (RES) have become increasingly desirable worldwide in the fight against global climate change. The sharp decrease in costs of especially wind and solar photovoltaics (PV) have created opportunities to move from dependency on conventional fossil fuel-based electricity production towards renewable energy sources. Renewables experience around 7% (in 2018) annual growth rate in the electricity production globally and the pace is expected to further increase in the near future. Cuba is no exception in this regard, the government has set an ambitious renewable energy target of 24% RES of electricity production by the year 2030. The article analyses renewable energy trajectories in Isla de la Juventud, Cuba, through different future energy scenarios utilizing EnergyPLAN tool. The goal is to identify the best fit and least cost options in transitioning towards 100% electric power systemin Isla de la Juventud, Cuba. The work is divided into analysis of (1) technical possibilities for five scenarios in the electricity production with a 40% increase of electricity consumption by 2030: Business As Usual (BAU 2030, with the current electric power system (EPS) setup), VISION 2030 (according to the Cuban government plan with 24% RES), Advanced Renewables (ARES, with 50% RES), High Renewables (HiRES, with 70% RES), and Fully Renewables (FullRES, with 100% RES based electricity system) scenarios and (2) defining least cost options for the five scenarios in Isla de la Juventud, Cuba. The results show that high penetration of renewables is technically possible even up to 100% RES although the best technological fit versus least cost options may not favor the 100% RES based systems with the current electric power system (EPS) setup. This is due to realities in access to resources, especially importation of state of the art technological equipment and biofuels, financial and investment resources, as well as the high costs of storage systems. The analysis shows the Cuban government vision of reaching 24% of RES in the electricity production by 2030 can be exceeded even up to 70% RES based systems with similar or even lower costs in the near future in Isla de la Juventud. However, overcoming critical challenges in the economic, political, and legal conditions are crucially important; how will the implementation of huge national capital investments and significant involvement of Foreign Direct Investments (FDI) actualize to support achievement of the Cuban government’s 2030 vision?


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Jakub Jurasz ◽  
Jerzy Mikulik

Polish energy sector is (almost from its origin) dominated by fossil fuel feed power. This situation results from an abundance of relatively cheap coal (hard and lignite). Brown coal due to its nature is the cheapest energy source in Poland. However, hard coal which fuels 60% of polish power plants is picking up on prices and is susceptible to the coal imported from neighboring countries. Forced by the European Union (EU) regulations, Poland is struggling at achieving its goal of reaching 15% of energy consumption from renewable energy sources (RES) by 2020. Over the year 2015, RES covered 11.3% of gross energy consumption but this generation was dominated by solid biomass (over 80%). The aim of this paper was to answer the following research questions: What is the relation of irradiation values to the power load on a yearly and daily basis? and how should photovoltaics (PV) be integrated in the polish power system? Conducted analysis allowed us to state that there exists a negative correlation between power demand and irradiation values on a yearly basis, but this is likely to change in the future. Secondly, on average, daily values of irradiation tend to follow power load curve over the first hours of the day.


2012 ◽  
pp. 73-77
Author(s):  
Orsolya Nagy

Due to the exhaustion of the fossile fuel reserves of the Earth, the increase of fossile fuel prices and the difficulties concerning stable fuel supply, the increase of electricity production from renewable energy sources has a special strategic importance. In this study, I am going to evaluate the circumstances of the production and use of renewable energy sources in Hungary and in the European Union. I present the Hungarian economic, energy policy-related and social circumstances which make it necessary to support renewable energy production. I am going to give an overview on the related EU strategies concerning the sector and the Hungarian development plan in this field. I pay particular attention to the examination of development opportunities and the R&D activities going on in this area in Hungary, as well as the efficiency of the means used to improve renewable energy use.


Sign in / Sign up

Export Citation Format

Share Document