scholarly journals Research on Robustness of Related Images for Power Equipment Inspection

2021 ◽  
Vol 2113 (1) ◽  
pp. 012045
Author(s):  
Chunlei Zhou ◽  
Xiangzhou Chen ◽  
Wenli Liu ◽  
Tianyu Dong ◽  
Huang Yun

Abstract With the increase in the number of traction substations year by year, manual inspections are gradually being replaced by unattended inspections. Target detection algorithms based on deep learning are more widely used in intelligent inspections of power equipment. However, in practical applications, it is found that due to the small target to be detected, the accuracy of the deep learning model will decrease when the shooting angle is inclined and the light conditions are poor. This is because the algorithm’s robustness is low, and the detection ability of the model will be seriously affected when the angle or illumination difference with the sample is large. Based on this, the feature fusion part of the YOLOv3 algorithm and the selection of the loss function and the size of the anchor frame are improved, and the improved ASFF fusion method is used to classify various images in the power equipment. Actual measurement and repeated experiments show that the proposed method can be effectively applied to image recognition of various power equipment, optimize robustness, and greatly improve the image recognition efficiency of power equipment.

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Guangyi Yang ◽  
Xingyu Ding ◽  
Tian Huang ◽  
Kun Cheng ◽  
Weizheng Jin

Abstract Communications industry has remarkably changed with the development of fifth-generation cellular networks. Image, as an indispensable component of communication, has attracted wide attention. Thus, finding a suitable approach to assess image quality is important. Therefore, we propose a deep learning model for image quality assessment (IQA) based on explicit-implicit dual stream network. We use frequency domain features of kurtosis based on wavelet transform to represent explicit features and spatial features extracted by convolutional neural network (CNN) to represent implicit features. Thus, we constructed an explicit-implicit (EI) parallel deep learning model, namely, EI-IQA model. The EI-IQA model is based on the VGGNet that extracts the spatial domain features. On this basis, the number of network layers of VGGNet is reduced by adding the parallel wavelet kurtosis value frequency domain features. Thus, the training parameters and the sample requirements decline. We verified, by cross-validation of different databases, that the wavelet kurtosis feature fusion method based on deep learning has a more complete feature extraction effect and a better generalisation ability. Thus, the method can simulate the human visual perception system better, and subjective feelings become closer to the human eye. The source code about the proposed EI-IQA model is available on github https://github.com/jacob6/EI-IQA.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yerong Zhong ◽  
Guoheng Ruan ◽  
Ehab Abozinadah ◽  
Jiaming Jiang

Abstract This article proposes a nameplate recognition method based on the least-squares method and deep learning algorithm character feature fusion. This method extracts the histogram of the edge direction of the character and constructs the histogram feature vector based on the wavelet transform deep learning algorithm. We use classifier training for the text recognition of the nameplate to segment the text into individual characters. Then, we extract the character features to build a template. Experiments prove that the algorithm meets the practical application needs of nameplate identification of power equipment and achieves the design goals.


2021 ◽  
Vol 15 ◽  
Author(s):  
Liqun Gao ◽  
Yujia Liu ◽  
Hongwu Zhuang ◽  
Haiyang Wang ◽  
Bin Zhou ◽  
...  

With the rapid popularity of agent technology, a public opinion early warning agent has attracted wide attention. Furthermore, a deep learning model can make the agent more automatic and efficient. Therefore, for the agency of a public opinion early warning task, the deep learning model is very suitable for completing tasks such as popularity prediction or emergency outbreak. In this context, improving the ability to automatically analyze and predict the virality of information cascades is one of the tasks that deep learning model approaches address. However, most of the existing studies sought to address this task by analyzing cascade underlying network structure. Recent studies proposed cascade virality prediction for agnostic-networks (without network structure), but did not consider the fusion of more effective features. In this paper, we propose an innovative cascade virus prediction model named CasWarn. It can be quickly deployed in intelligent agents to effectively predict the virality of public opinion information for different industries. Inspired by the agnostic-network model, this model extracts the key features (independent of the underlying network structure) of an information cascade, including dissemination scale, emotional polarity ratio, and semantic evolution. We use two improved neural network frameworks to embed these features, and then apply the classification task to predict the cascade virality. We conduct comprehensive experiments on two large social network datasets. Furthermore, the experimental results prove that CasWarn can make timely and effective cascade virality predictions and verify that each feature model of CasWarn is beneficial to improve performance.


Author(s):  
Jiajia Liao ◽  
Yujun Liu ◽  
Yingchao Piao ◽  
Jinhe Su ◽  
Guorong Cai ◽  
...  

AbstractRecent advances in camera-equipped drone applications increased the demand for visual object detection algorithms with deep learning for aerial images. There are several limitations in accuracy for a single deep learning model. Inspired by ensemble learning can significantly improve the generalization ability of the model in the machine learning field, we introduce a novel integration strategy to combine the inference results of two different methods without non-maximum suppression. In this paper, a global and local ensemble network (GLE-Net) was proposed to increase the quality of predictions by considering the global weights for different models and adjusting the local weights for bounding boxes. Specifically, the global module assigns different weights to models. In the local module, we group the bounding boxes that corresponding to the same object as a cluster. Each cluster generates a final predict box and assigns the highest score in the cluster as the score of the final predict box. Experiments on benchmarks VisDrone2019 show promising performance of GLE-Net compared with the baseline network.


2020 ◽  
Author(s):  
dongshen ji ◽  
yanzhong zhao ◽  
zhujun zhang ◽  
qianchuan zhao

In view of the large demand for new coronary pneumonia covid19 image recognition samples,the recognition accuracy is not ideal.In this paper,a new coronary pneumonia positive image recognition method proposed based on small sample recognition. First, the CT image pictures are preprocessed, and the pictures are converted into the picture formats which are required for transfer learning. Secondly, perform small-sample image enhancement and expansion on the converted picture, such as miscut transformation, random rotation and translation, etc.. Then, multiple migration models are used to extract features and then perform feature fusion. Finally,the model is adjusted by fine-tuning.Then train the model to obtain experimental results. The experimental results show that our method has excellent recognition performance in the recognition of new coronary pneumonia images,even with only a small number of CT image samples.


Sign in / Sign up

Export Citation Format

Share Document