scholarly journals Forced convection heat transfer characteristics of Al2O3 nanofluids in a minichannel - an experimental study

2021 ◽  
Vol 2116 (1) ◽  
pp. 012056
Author(s):  
D Roque ◽  
W Ajeeb ◽  
S M S Murshed ◽  
J M C Pereira

Abstract In this study, an experimental investigation on the convective heat transfer characteristics of Al2O3 nanofluids flowing through an horizontal minichannel under the laminar and turbulent flow and constant heat flux conditions is performed. Several sample nanofluids were prepared using two base fluids (water and the mixture 80/20 DW/EG vol.%) and several low concentrations of Al2O3 nanoparticles ranging from 0.01 to 0.1 vol%. An existing experimental setup was modified for this study. The measurements were taken for the base fluid and nanofluids at each flow and heating conditions. The results are analyzed in terms of Nu and friction factor (f) in comparison with those of the base fluid. The results demonstrate that the used low concentrations of Al2O3 nanoparticles are not enough to yield any noticeable enhancement in heat transfer of the nanofluid samples. The deviations between the results of the nanofluids and the base fluid are small and within the uncertainty range of the experimental setup.

2014 ◽  
Vol 18 (suppl.1) ◽  
pp. 189-200 ◽  
Author(s):  
Primoz Ternik ◽  
Rebeka Rudolf

The present work deals with the natural convection in a square cavity filled with the water-based Au nanofluid. The cavity is heated on the vertical and cooled from the adjacent wall, while the other two horizontal walls are adiabatic. The governing differential equations have been solved by the standard finite volume method and the hydrodynamic and thermal fields were coupled together using the Boussinesq approximation. The main objective of this study is to investigate the influence of the nanoparticles? volume fraction on the heat transfer characteristics of Au nanofluids at the given base fluid?s (i.e. water) Rayleigh number. Accurate results are presented over a wide range of the base fluid Rayleigh number and the volume fraction of Au nanoparticles. It is shown that adding nanoparticles in a base fluid delays the onset of convection. Contrary to what is argued by many authors, we show by numerical simulations that the use of nanofluids can reduce the heat transfer rate instead of increasing it.


Author(s):  
Chungpyo Hong ◽  
Yutaka Asako

Two-dimensional compressible momentum and energy equations are solved to obtain the heat transfer characteristics of gaseous flows in micro-channels with CHF (constant heat flux) whose value is negative. The combined effect of viscous dissipation and compressibility is also investigated. The numerical methodology is based on the Arbitrary-Lagrangian-Eulerian (ALE) method. The computations are performed for channels with constant heat flux with range from −104 to −102 Wm−2. The channel height ranges from 10 to 100 μm and the aspect ratio of the channel height and length is 200. The stagnation pressure varies from 120 to 500 kPa. The outlet pressure is fixed at the atmosphere. The wall and bulk temperatures in micro-channels are compared with those of the case of positive heat flux and also compared with those of the incompressible flow in a conventional sized channel. In the case of negative heat flux, temperature profiles normalized by heat flux have different trends in the case of positive heat flux, when flow is fast. A gas temperature falls down due to the energy conversion. A correlation for the prediction of the wall temperature of the gaseous flow in the micro-channel is proposed.


Author(s):  
Olugbenga O. Noah ◽  
Johan F. Slabber ◽  
Josua P. Meyer

Natural convection heat transfer in fluid-saturated porous media has in recent years gained considerable attention especially in High Temperature Reactors (HTR). It is lately proposed that Light Water Reactors (LWT) can be made safer by re-designing the fuel in the fuel assembly. In the proposed design, porous medium containing fuel in the form of loose coated particles in a Helium environment is introduced inside the cladding tubes of the fuel elements. These coated particles are treated as a bed from where heat is transferred to the cladding tube and the gas movement is due to natural convection. This proposal will require an understanding of the heat transfer characteristics from heated particles fuel to the gas atmosphere within the cladding tubes. In this present study, the natural convection heat transfer characteristics in packed beds from fluid-to-particle and bed particles to helium gas (thermal energy storage system) was experimentally investigated. Medium condition in this study was homogenous, isotropic, negligible radiant heat transfer and at local thermal non-equilibrium (LTNE). Theoretical formulation of microscopic thermal energy balance in the medium was employed in the analysis of experimental data. This formulation accounts for the convective heat transfer coefficient, the net rate of heat conduction into a unit volume of the solid and the heat production per unit volume of the particle. Dimensionless parameters like the Nusselt, Grashof, Prandtl, Rayleigh and Biot numbers defining heat transfer effect in the medium were equally determined and results validated with the KTA correlation.


Sign in / Sign up

Export Citation Format

Share Document