scholarly journals Modelling plant transpiration and leaf climate using CFD

2021 ◽  
Vol 2116 (1) ◽  
pp. 012076
Author(s):  
Wito Plas ◽  
Michel De Paepe

Abstract Research into vertical farms or plant factories is steadily increasing over the years, as the demand for sustainable food production and a shift to more environmental friendly food production is occurring. Modelling plant climate in these confined spaces is therefore essential to guarantee optimal growing conditions. Modelling of plant climate has already been done in greenhouses, but at length scales much bigger than individual leaves. In this study, one single plant will be modelled, using computational fluid dynamics and by incorporating additional source terms in the relevant transport equations. Plants are modelled using the big leaf approach, where a plant is modelled as one artificial leaf. Water vapour flux in plants is controlled by two resistances in series, the aerodynamic resistance, which is a function of the boundary layer around the leaves and the stomatal resistance, which is the resistance against water vapour transport in leaves. Two different plants are studied, impatiens pot plant and basil plants. Values of stomatal resistance for these crops are obtained from literature or were measured. Evapotranspiration was compared with the Penman-Monteith equation.

2016 ◽  
Vol 37 (9) ◽  
pp. 3660-3673 ◽  
Author(s):  
Weili Duan ◽  
Bin He ◽  
Netrananda Sahu ◽  
Pingping Luo ◽  
Daniel Nover ◽  
...  

2003 ◽  
Vol 23 (13) ◽  
pp. 1663-1675 ◽  
Author(s):  
Adrie F. G. Jacobs ◽  
Bert G. Heusinkveld ◽  
Albert A. M. Holtslag

2006 ◽  
Vol 6 (3) ◽  
pp. 5329-5355 ◽  
Author(s):  
C. Ammann ◽  
A. Brunner ◽  
C. Spirig ◽  
A. Neftel

Abstract. The most direct approach for measuring the exchange of biogenic volatile organic compounds between terrestrial ecosystems and the atmosphere is the eddy covariance technique. It has been applied several times in the last few years using fast response proton-transfer-reaction mass spectrometry (PTR-MS). We present an independent validation of this technique by applying it to measure the water vapour flux in comparison to a common reference system comprising an infra-red gas analyser (IRGA). Water vapour was detected in the PTR-MS at mass 37 (atomic mass units) corresponding to the cluster ion H3O+·H2O. During a five-week field campaign at a grassland site, we obtained a non-linear but stable calibration function between the mass 37 signal and the reference water vapour concentration. With a correction of the high-frequency damping loss based on empirical ogive analysis, the eddy covariance water vapour flux obtained with the PTR-MS showed a very good agreement with the flux of the reference system. The application of the empirical ogive method for high-frequency correction led to significantly better results than using a correction based on theoretical spectral transfer functions. This finding is attributed to adsorption effects on the tube walls that are presently not included in the theoretical correction approach.


2007 ◽  
Vol 4 (3) ◽  
pp. 395-410 ◽  
Author(s):  
A. Brunner ◽  
C. Ammann ◽  
A. Neftel ◽  
C. Spirig

Abstract. Concentrations and fluxes of methanol were measured above two differently managed grassland fields (intensive and extensive) in central Switzerland during summer 2004. The measurements were performed with a proton-transfer-reaction mass-spectrometer and fluxes were determined by the eddy covariance method. The observed methanol emission showed a distinct diurnal cycle and was strongly correlated with global radiation and water vapour flux. Mean and maximum daily emissions were found to depend on grassland species composition and, for the intensive field, also on the growing state. The extensive field with a more complex species composition had higher emissions than the graminoid-dominated intensive field, both on an area and on a biomass basis. A simple parameterisation depending on the water vapour flux and the leaf area index allowed a satisfying simulation of the temporal variation of methanol emissions over the growing phase. Accumulated carbon losses due to methanol emissions accounted for 0.024 and 0.048% of net primary productivity for the intensive and extensive field, respectively. The integral methanol emissions over the growing periods were more than one order of magnitude higher than the emissions related to cut and drying events.


2007 ◽  
Vol 147 (3-4) ◽  
pp. 140-156 ◽  
Author(s):  
Andreas Ibrom ◽  
Ebba Dellwik ◽  
Henrik Flyvbjerg ◽  
Niels Otto Jensen ◽  
Kim Pilegaard

2006 ◽  
Vol 6 (12) ◽  
pp. 4643-4651 ◽  
Author(s):  
C. Ammann ◽  
A. Brunner ◽  
C. Spirig ◽  
A. Neftel

Abstract. The most direct approach for measuring the exchange of biogenic volatile organic compounds between terrestrial ecosystems and the atmosphere is the eddy covariance technique. It has been applied several times in the last few years using fast response proton-transfer-reaction mass spectrometry (PTR-MS). We present an independent validation of this technique by applying it to measure the water vapour flux in comparison to a common reference system comprising an infra-red gas analyser (IRGA). Water vapour was detected in the PTR-MS at mass 37 (atomic mass units) corresponding to the cluster ion H3O+·H2O. During a five-week field campaign at a grassland site, we obtained a non-linear but stable calibration function between the mass 37 signal and the reference water vapour concentration. With a correction of the high-frequency damping loss based on empirical ogive analysis, the eddy covariance water vapour flux obtained with the PTR-MS showed a very good agreement with the flux of the reference system. The application of the empirical ogive method for high-frequency correction led to significantly better results than using a correction based on theoretical spectral transfer functions. This finding is attributed to adsorption effects on the tube walls that are presently not included in the theoretical correction approach. The proposed high-frequency correction method can also be used for other trace gases with different adsorption characteristics.


Sign in / Sign up

Export Citation Format

Share Document