scholarly journals An optimized demand-response operation method of regional integrated energy system considering 5G base station energy storage

2021 ◽  
Vol 2121 (1) ◽  
pp. 012007
Author(s):  
Yunli Yue ◽  
Beibei Sun ◽  
Yiming Xue ◽  
Jianmin Ding ◽  
kerui Liang ◽  
...  

Abstract The scheduling technology of regional integrated energy system is one of the key technologies to realize carbon neutralization by utilizing wind-power. Aiming at the optimal scheduling problem of regional electrothermal integrated energy system considering wind-power utilization and load side energy consumption, this paper proposes an optimized demand-response operation method of regional integrated energy system considering 5G base station energy storage. The regional integrated energy system of load side demand response is constructed based on the comprehensive consideration of technical and economic factors such as wind-power utilization and economic costs and load side peak valley difference. Finally, a two-layer particle swarm optimization method is proposed to solve the model. The experimental results show that the proposed method can effectively achieve wind-power utilization, economic dispatch and reduce the peak valley difference through load side demand response, which can improve the economic efficiency, environmental protection and low-carbon operation of regional integrated energy system.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2539
Author(s):  
Zhengjie Li ◽  
Zhisheng Zhang

At present, due to the errors of wind power, solar power and various types of load forecasting, the optimal scheduling results of the integrated energy system (IES) will be inaccurate, which will affect the economic and reliable operation of the integrated energy system. In order to solve this problem, a day-ahead and intra-day optimal scheduling model of integrated energy system considering forecasting uncertainty is proposed in this paper, which takes the minimum operation cost of the system as the target, and different processing strategies are adopted for the model. In the day-ahead time scale, according to day-ahead load forecasting, an integrated demand response (IDR) strategy is formulated to adjust the load curve, and an optimal scheduling scheme is obtained. In the intra-day time scale, the predicted value of wind power, solar power and load power are represented by fuzzy parameters to participate in the optimal scheduling of the system, and the output of units is adjusted based on the day-ahead scheduling scheme according to the day-ahead forecasting results. The simulation of specific examples shows that the integrated demand response can effectively adjust the load demand and improve the economy and reliability of the system operation. At the same time, the operation cost of the system is related to the reliability of the accurate prediction of wind power, solar power and load power. Through this model, the optimal scheduling scheme can be determined under an acceptable prediction accuracy and confidence level.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 51
Author(s):  
Rong Xie ◽  
Weihuang Liu ◽  
Muyan Chen ◽  
Yanjun Shi

Integrated energy system (IES) is an important direction for the future development of the energy industry, and the stable operation of the IES can ensure heat and power supply. This study established an integrated system composed of an IES and advanced adiabatic compressed air energy storage (AA-CAES) to guarantee the robust operation of the IES under failure conditions. Firstly, a robust operation method using the AA-CAES is formulated to ensure the stable operation of the IES. The method splits the energy release process of the AA-CAES into two parts: a heat-ensuring part and a power-ensuring part. The heat-ensuring part uses the high-temp tank to maintain the balance of the heat subnet of the IES, and the power-ensuring part uses the air turbine of the first stage to maintain the balance of the power subnet. Moreover, another operation method using a spare gas boiler is formulated to compare the income of the IES with two different methods under failure conditions. The results showed that the AA-CAES could guarantee the balance of heat subnet and power subnet under steady conditions, and the dynamic operation income of the IES with the AA-CAES method was a bit higher than the income of the IES with the spare gas boiler method.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 710 ◽  
Author(s):  
Shuhui Ren ◽  
Xun Dou ◽  
Zhen Wang ◽  
Jun Wang ◽  
Xiangyan Wang

For the integrated energy system of coupling electrical, cool and heat energy and gas and other forms of energy, the medium- and long-term integrated demand response of flexible load, energy storage and electric vehicles and other demand side resources is studied. It is helpful to mine the potentials of demand response of various energy sources in the medium- and long-term, stimulate the flexibility of integrated energy system, and improve the efficiency of energy utilization. Firstly, based on system dynamics, the response mode of demand response resources is analyzed from different time dimensions, and the long-term, medium-term and short-term behaviors of users participating in integrated demand response are considered comprehensively. An integrated demand response model based on medium-and long-term time dimension is established. Then the integrated demand response model of integrated energy system scheduling and flexible load, energy storage and electric vehicles as the main participants is established to simulate the response income of users participating in the integrated demand response project, and to provide data sources for the medium- and long-term integrated demand response system dynamics model. Finally, an example is given to analyze the differences in response behaviors of flexible load, energy storage and electric vehicle users in different time dimensions under the conditions of policy subsidy, regional location and user energy preferences in different stages of the integrated energy system.


Sign in / Sign up

Export Citation Format

Share Document