scholarly journals The eddy-current and ultrasonic investigations of the nickel-base superalloy the gas turbine engine blades after exploitation

2021 ◽  
Vol 2131 (5) ◽  
pp. 052025
Author(s):  
A V Gonchar ◽  
V V Mishakin ◽  
V A Klushnikov ◽  
K V Kurashkin

Abstract The work carried out microstructural, eddy-current and ultrasonic studies of the material of spent blades of gas turbine engines made of nickel-base superalloy. To determine the degree of damage to the material of the spent blades, studies of the microstructure were carried out on a scanning electron microscope. It was found that γ' coagulation occurred in some specimens, which corresponds to overheated material. Acoustic studies of the material were carried out using the ultrasonic pulse echo method. Comparative analysis showed that in such specimens there is a significant decrease in the velocity of propagation and attenuation of longitudinal ultrasonic waves. It is found that the readings of the eddy-current flaw detector in overheated specimens differ more than twice in comparison with non-overheated specimens. This fact can be used for operational non-destructive testing of the actual state of the metal structure by the eddy current method with the aim of further safe operation of gas turbine engines.

Author(s):  
D. L. Klarstrom ◽  
H. M. Tawancy ◽  
D. E. Fluck ◽  
M. F. Rothman

A wrought, nickel-base superalloy based on the Ni-Cr-W system has been developed for applications in the hot section of gas turbine engines. The new alloy is solid solution strengthened and very thermally stable. It particularly resists the formation of detrimental intermetallic compounds and contains little or no cobalt. Various mechanical and oxidation properties of the new alloy were measured, and the microstructural features were characterized. These were compared with those for other solid solution strengthened, high-temperature alloys. A number of advantages of the new alloy are defined.


Author(s):  
M. M. Kirka ◽  
D. J. Smith ◽  
R. W. Neu

The prediction of temperature-dependent fatigue deformation and damage in directionally solidified and single-crystal nickel-base superalloy components used in the hot section of gas turbine engines requires a constitutive model that accounts for the crystal orientation in addition to the changing deformation mechanisms and rate dependencies from room temperature to extremes of the use temperature (e.g., 1050 °C). Crystal viscoplasticity (CVP) models are ideal for accounting for all of these dependencies. However, as the models become more physically realistic in capturing the true cyclic deformation mechanisms, increases the requirements to achieve an accurate model calibration. As a result, CVP models have yet to become viable for life analysis in industry. To make CVP models an industry relevant tool, the calibration times must be reduced. This paper explores methods to reduce the calibration time. First, a series of special calibration experiments are conceived and conducted on each relevant orientation and microstructure. Second, a set of parameterization protocols are used to minimize parameter interdependencies that reduce the amount of iteration required during the calibration. These experimental and calibration protocols are exercised using the CVP model of Shenoy et al. (2005, “Thermomechanical Fatigue Behavior of a Directionally Solidified Ni-Base Superalloy,” ASME J. Eng. Mater. Technol., 127(3), pp. 325–336) by calibrating a directionally solidified Ni-base superalloy across an industry relevant temperature range of 20 °C to 1050 °C.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2107 ◽  
Author(s):  
Sergey Borovik ◽  
Yuriy Sekisov

The creation and exploitation of gas turbine engines (GTE) often involve two mutually exclusive tasks related to ensuring the highest reliability while achieving a good economic and environmental performance of the power plant. The value of the radial clearance between the blade tips of the compressor or turbine and the stator is a parameter that has a significant impact on the efficiency and safety of the GTE. However, the radial displacements that form tip clearances are only one of the components of the displacements made by GTE elements due to the action of power loads and thermal deformations during engines’ operation. The impact of loads in conjunction with natural aging is also the reason for the wear of the GTE’s structural elements (for example, bearing assemblies) and the loss of their mechanical strength. The article provides an overview of the methods and tools for monitoring the dangerous states of the GTE (blade tips clearances, impellers and shafts displacements, debris detecting in lubrication system) based on the single-coil eddy current sensor, which remains operational at the temperatures above 1200 °C. The examples of practical application of the systems with such sensors in bench tests of the GTE are given.


2006 ◽  
Vol 321-323 ◽  
pp. 509-512 ◽  
Author(s):  
Jung Seob Hyun ◽  
Gee Wook Song ◽  
Young Shin Lee

A more accurate life prediction for gas turbine blade takes into account the material behavior under the complex thermo-mechanical fatigue (TMF) cycles normally encountered in turbine operation. An experimental program has been carried out to address the thermo-mechanical fatigue life of the IN738LC nickel-base superalloy. High temperature out-of-phase and in-phase TMF experiments in strain control were performed on superalloy materials. Temperature interval of 450-850 was applied to thermo-mechanical fatigue tests. The stress-strain response and the life cycle of the material were measured during the test. The mechanisms of TMF damage is discussed based on the microstructural evolution during TMF. The plastic strain energy based life pediction models were applied to the stress-strain history effect on the thermo-mechanical fatigue lives.


1996 ◽  
Vol 78 (1-3) ◽  
pp. 113-123 ◽  
Author(s):  
A.A. Tchizhik ◽  
A.I. Rybnikov ◽  
I.S. Malashenko ◽  
S.A. Leontiev ◽  
A.S. Osyka

Alloy Digest ◽  
1968 ◽  
Vol 17 (12) ◽  

Abstract MAR-M Alloy 421 is a precipitation hardened nickel-base superalloy developed to provide a good combination of high strength, ductility, sulfidation resistance, and stability. It is recommended for gas turbine applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-141. Producer or source: Martin Metals Division.


Sign in / Sign up

Export Citation Format

Share Document