A New Gas Turbine Combustor Alloy

Author(s):  
D. L. Klarstrom ◽  
H. M. Tawancy ◽  
D. E. Fluck ◽  
M. F. Rothman

A wrought, nickel-base superalloy based on the Ni-Cr-W system has been developed for applications in the hot section of gas turbine engines. The new alloy is solid solution strengthened and very thermally stable. It particularly resists the formation of detrimental intermetallic compounds and contains little or no cobalt. Various mechanical and oxidation properties of the new alloy were measured, and the microstructural features were characterized. These were compared with those for other solid solution strengthened, high-temperature alloys. A number of advantages of the new alloy are defined.

2021 ◽  
Vol 2131 (5) ◽  
pp. 052025
Author(s):  
A V Gonchar ◽  
V V Mishakin ◽  
V A Klushnikov ◽  
K V Kurashkin

Abstract The work carried out microstructural, eddy-current and ultrasonic studies of the material of spent blades of gas turbine engines made of nickel-base superalloy. To determine the degree of damage to the material of the spent blades, studies of the microstructure were carried out on a scanning electron microscope. It was found that γ' coagulation occurred in some specimens, which corresponds to overheated material. Acoustic studies of the material were carried out using the ultrasonic pulse echo method. Comparative analysis showed that in such specimens there is a significant decrease in the velocity of propagation and attenuation of longitudinal ultrasonic waves. It is found that the readings of the eddy-current flaw detector in overheated specimens differ more than twice in comparison with non-overheated specimens. This fact can be used for operational non-destructive testing of the actual state of the metal structure by the eddy current method with the aim of further safe operation of gas turbine engines.


Author(s):  
M. M. Kirka ◽  
D. J. Smith ◽  
R. W. Neu

The prediction of temperature-dependent fatigue deformation and damage in directionally solidified and single-crystal nickel-base superalloy components used in the hot section of gas turbine engines requires a constitutive model that accounts for the crystal orientation in addition to the changing deformation mechanisms and rate dependencies from room temperature to extremes of the use temperature (e.g., 1050 °C). Crystal viscoplasticity (CVP) models are ideal for accounting for all of these dependencies. However, as the models become more physically realistic in capturing the true cyclic deformation mechanisms, increases the requirements to achieve an accurate model calibration. As a result, CVP models have yet to become viable for life analysis in industry. To make CVP models an industry relevant tool, the calibration times must be reduced. This paper explores methods to reduce the calibration time. First, a series of special calibration experiments are conceived and conducted on each relevant orientation and microstructure. Second, a set of parameterization protocols are used to minimize parameter interdependencies that reduce the amount of iteration required during the calibration. These experimental and calibration protocols are exercised using the CVP model of Shenoy et al. (2005, “Thermomechanical Fatigue Behavior of a Directionally Solidified Ni-Base Superalloy,” ASME J. Eng. Mater. Technol., 127(3), pp. 325–336) by calibrating a directionally solidified Ni-base superalloy across an industry relevant temperature range of 20 °C to 1050 °C.


2006 ◽  
Vol 321-323 ◽  
pp. 509-512 ◽  
Author(s):  
Jung Seob Hyun ◽  
Gee Wook Song ◽  
Young Shin Lee

A more accurate life prediction for gas turbine blade takes into account the material behavior under the complex thermo-mechanical fatigue (TMF) cycles normally encountered in turbine operation. An experimental program has been carried out to address the thermo-mechanical fatigue life of the IN738LC nickel-base superalloy. High temperature out-of-phase and in-phase TMF experiments in strain control were performed on superalloy materials. Temperature interval of 450-850 was applied to thermo-mechanical fatigue tests. The stress-strain response and the life cycle of the material were measured during the test. The mechanisms of TMF damage is discussed based on the microstructural evolution during TMF. The plastic strain energy based life pediction models were applied to the stress-strain history effect on the thermo-mechanical fatigue lives.


1996 ◽  
Vol 78 (1-3) ◽  
pp. 113-123 ◽  
Author(s):  
A.A. Tchizhik ◽  
A.I. Rybnikov ◽  
I.S. Malashenko ◽  
S.A. Leontiev ◽  
A.S. Osyka

Author(s):  
A. M. Mellor ◽  
R. M. Washam

The continuing development of a characteristic time model for gaseous pollutant emissions from conventional gas turbine engines is described. The now engine studied here is the Pratt and Whitney JT9D, and it is shown that universal correlations can be obtained by comparison with previous results. Current limitations of the modeling approach are detailed.


Alloy Digest ◽  
1968 ◽  
Vol 17 (12) ◽  

Abstract MAR-M Alloy 421 is a precipitation hardened nickel-base superalloy developed to provide a good combination of high strength, ductility, sulfidation resistance, and stability. It is recommended for gas turbine applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-141. Producer or source: Martin Metals Division.


2021 ◽  
Author(s):  
Saurabh Patwardhan ◽  
Pravin Nakod ◽  
Stefano Orsino ◽  
Rakesh Yadav ◽  
Fang Xu ◽  
...  

Abstract Carbon monoxide (CO) has been identified as one of the regulated pollutants and gas turbine manufacturers target to reduce the CO emission from their gas turbine engines. CO forms primarily when carbonous fuels are not burnt completely, or products of combustion are quenched before completing the combustion. Numerical simulations are effective tools that allow a better understanding of the mechanisms of CO formation in gas turbine engines and are useful in evaluating the effect of different parameters like swirl, fuel atomization, mixing etc. on the overall CO emission for different engine conditions like idle, cruise, approach and take off. In this paper, a thorough assessment of flamelet generated manifold (FGM) combustion model is carried out to predict the qualitative variation and magnitude of CO emission index with the different configurations of a Honeywell test combustor operating with liquid fuel under idle condition, which is the more critical engine condition for CO emission. The different designs of the test combustor are configured in such a way that they yield different levels of CO and hence are ideal to test the accuracy of the combustion model. Large eddy simulation (LES) method is used for capturing the turbulence accurately along with the FGM combustion model that is computationally economical compared to the detailed/reduced chemistry modeling using finite rate combustion model. Liquid fuel spray breakup is modeled using stochastic secondary droplet (SSD) model. Four different configurations of the aviation gas turbine combustor are studied in this work referring to earlier work by Xu et al. [1]. It is shown that the FGM model can predict CO trends accurately. The other global parameters like exit temperature, NOx emissions, pattern factor also show reasonable agreement with the test data. The sensitivity of the CO prediction to the liquid fuel droplet breakup model parameters is also studied in this work. Although the trend of CO variation is captured for different values of breakup parameters, the absolute magnitude of CO emission index differs significantly with the change in the values of breakup parameters suggesting that the spray has a larger impact on the quantitative prediction of CO emission. An accurate prediction of CO trends at idle conditions using FGM model extends the applicability of FGM model to predict different engine operating conditions for different performance criteria accurately.


Sign in / Sign up

Export Citation Format

Share Document