scholarly journals Arc-PVD coatings for titanium machining tool

2021 ◽  
Vol 2144 (1) ◽  
pp. 012025
Author(s):  
I V Blinkov ◽  
A P Demirov ◽  
D S Belov ◽  
A V Chernogor

Abstract The paper presents results of life tests in machining titanium alloy with cutting carbide tool with Ti-Mo-Al-Ni-Si-N, (Ti, Al) N coatings and without it. Shown, that tool life with first coatings is 1.8 and 3.6 times higher than tool with second coatings and simple carbide tool,respectively.

2014 ◽  
Vol 800-801 ◽  
pp. 526-530 ◽  
Author(s):  
Shu Cai Yang ◽  
Yu Hua Zhang ◽  
Quan Wan ◽  
Jian Jun Chen ◽  
Chuang Feng

The milling experiments were carried out using TiAlN and PCD coated carbide tools in high speed milling Ti6Al4V to compare and analyze tool wear and tool life of the two kinds of coating carbide tools. In addition, the effect of cooling and lubricating on tool wear is also studied. The results showed that fluid environment is not suitable for milling Ti6Al4V. PCD coating carbide tool can effectively increase the life of tool in high speed milling of Ti6Al4V.


2012 ◽  
Vol 497 ◽  
pp. 30-34 ◽  
Author(s):  
Jin Yang Xu ◽  
Zhi Qiang Liu ◽  
Qing Long An ◽  
Ming Chen

The TiAlN and AlTiN coated carbide cutting tools were adopted for high-speed turning of α+β phase titanium alloy Ti-6Al-4V. Both the wear pattern and wear mechanism were investigated in this research. Results show that: MQL condition can greatly prolong the tool life of AlTiN coated carbide tool but has minor influence on improving the tool life of TiAlN carbide tool. AlTiN coated carbide tool was found to be qualified to obtain better cutting performance and longer tool life and is more suitable for processing titanium alloy TC4 compared with TiAlN coated tool under the same cutting parameters. In dry cutting condition, both adhesive and oxidation wear were observed to be the main wear types in these two coated carbide tools. However, in MQL condition, TiAlN coated tool may only suffer adhesive wear while the AlTiN coated carbide tool suffer adhesive, diffusion and oxidation wear.


2015 ◽  
Vol 713-715 ◽  
pp. 217-222 ◽  
Author(s):  
Sarwar Ali Abbasi ◽  
Ping Fa Feng

Tool nose radius is an important geometrical parameter in the design of the tool. Due to its direct contact with the workpiece surface it have significant effect not only on the resulting surface quality but also on the tool life. Use of an end mill without nose radius can easily blend during machining due to a lot of stresses acting on the edge of the tool while the large nose radius end mill can increase the strength and rigidity of the tool but can also contribute in increasing the friction between the tool and the workpiece. Therefore careful selection of tool nose radius is important and especially important for Polycrystalline Diamond, PCD insert as this tool material has recently shown great success in terms of tool life, surface roughness and productivity over coated and uncoated carbide tools in high speed end milling of titanium alloy Ti-6Al-4V and with the use of correct tool geometry it can be further helpful in increasing tool life and surface quality. This study therefore investigates the effect of various nose radii’s (R0.1,0.2,0.4,0.8,1.2,1.6,2.4,3.2) and complete round insert end mill on cutting forces and heat distribution between tool and the chip for PCD insert and compare the results with multi-layer (Al2O3+TiAlN+TiN) coated carbide tool at high speed cutting conditions using 3-D finite element numerical simulations. Results have shown that both tools due to their difference in thermal and mechanical properties have different behavior under the conditions studied especially when the complete round insert tool is used. The use of small nose radius tool when nose radius rn is less than the axial depth of cut ap, the forces and the temperature remains quite low and slightly increases with the increase of radius until rn is smaller than ap but when rn gets larger than ap and only some portion of nose radius is involved in cutting, then forces and temperature increases considerably. While when complete round insert end mill is used the forces and temperature significantly drops (more than 50% than the largest nose radius tool studied) at the same ap for PCD insert but for multi-layer coated carbide tool it drops only slightly (20% than the largest nose radius tool studied). The reason for this difference lies in the fact that PCD tool has lower toughness, high hot strength and is more brittle than carbide tools and therefore maximum advantage can be taken only when small nose radius is used or when complete round insert tool is used as complete round insert have uniform stress distribution and also provides more stability for PCD tool material while large nose radius tool increases friction and also has more heat penetration in the tool thus resulting in higher cutting forces and temperature thus ultimately contributing in high wear of tool. While on the other hand carbide tools are only beneficial when smaller nose radius tool is used rather than round shape because of lower hot strength of the material.


2012 ◽  
Vol 522 ◽  
pp. 231-235 ◽  
Author(s):  
Yi Hang Fan ◽  
Min Li Zheng ◽  
Zhe Li ◽  
Song Tao Wang ◽  
Ying Bin Li

The machining efficiency of titanium alloy Ti6Al4V is low and the tool wear is serious. In this paper, uncoated carbide tool and two kinds of coated cemented carbide tool were used for dry turning titanium alloy. The experiments used CCD Observing System and the EDAX analysis of SEM to study tool wear mechanism and analyze the cutting performance through tool life, cutting force and cutting temperature. The results show that the main wear reasons are adhesion, diffusion and oxidation wear. For coated tool, the coating peeled off first, and then tool substrate damaged. Compared with coated carbide tool, the uncoated carbide tool with fine grain has longer tool life and lower cutting force and cutting temperature. The changes of cutting force and cutting temperature with cutting speed are not obvious when using the ccomposite coating (TiAlN and AlCrN) carbide tool. The results can help to choose tool material reasonably and control tool wear.


2013 ◽  
Vol 773-774 ◽  
pp. 370-376
Author(s):  
Muhammad Adib Shaharun ◽  
Ahmad Razlan Yusoff ◽  
Mohammad S. Reza

Titanium is difficult-to-cut materials due to its poor machinability and thermal conductivity when machining at high cutting speed. To overcome this machining titanium alloy problem, this study in interaction between machining structural system and the cutting process are very important. One of the main problems in the cutting process is chatter vibration. Due to chatter problem, the mechanism to suppress chatter named, process damping is a useful method can be manipulated to improve the limited productivity of titanium machining at low speed machining in milling process. In the present study, experiment are conducted to evaluate and study the process damping mechanism in milling using different types of variable tools geometries. These tools are variable he-lix/uniform pitch, variable pitch/uniform helix and variable helix and pitch and uniform helix/pitch. The result showed that the variable helix and pitch tools is very significantly improve process damping performance in machining titanium alloy compare to traditional of regular tools and other irregular tools.


2013 ◽  
Vol 554-557 ◽  
pp. 1961-1966 ◽  
Author(s):  
Yessine Ayed ◽  
Guenael Germain ◽  
Amine Ammar ◽  
Benoit Furet

Titanium alloys are known for their excellent mechanical properties, especially at high temperature. But this specificity of titanium alloys can cause high cutting forces as well as a significant release of heat that may entail a rapid wear of the cutting tool. To cope with these problems, research has been taken in several directions. One of these is the development of assistances for machining. In this study, we investigate the high pressure coolant assisted machining of titanium alloy Ti17. High pressure coolant consists of projecting a jet of water between the rake face of the tool and the chip. The efficiency of the process depends on the choice of the operating parameters of machining and the parameters of the water jet such as its pressure and its diameter. The use of this type of assistance improves chip breaking and increases tool life. Indeed, the machining of titanium alloys is generally accompanied by rapid wear of cutting tools, especially in rough machining. The work done focuses on the wear of uncoated tungsten carbide tools during machining of Ti17. Rough and finish machining in conventional and in high pressure coolant assistance conditions were tested. Different techniques were used in order to explain the mechanisms of wear. These tests are accompanied by measurement of cutting forces, surface roughness and tool wear. The Energy-dispersive X-ray spectroscopy (EDS) analysis technique made it possible to draw the distribution maps of alloying elements on the tool rake face. An area of material deposition on the rake face, characterized by a high concentration of titanium, was noticed. The width of this area and the concentration of titanium decreases in proportion with the increasing pressure of the coolant. The study showed that the wear mechanisms with and without high pressure coolant assistance are different. In fact, in the condition of conventional machining, temperature in the cutting zone becomes very high and, with lack of lubrication, the cutting edge deforms plastically and eventually collapses quickly. By contrast, in high pressure coolant assisted machining, this problem disappears and flank wear (VB) is stabilized at high pressure. The sudden rupture of the cutting edge observed under these conditions is due to the propagation of a notch and to the crater wear that appears at high pressure. Moreover, in rough condition, high pressure assistance made it possible to increase tool life by up to 400%.


2018 ◽  
Author(s):  
Kai Guo ◽  
Bin Yang ◽  
Jie Sun ◽  
Vinothkumar Sivalingam

Titanium alloys are widely utilized in aerospace thanks to their excellent combination of high-specific strength, fracture, corrosion resistance characteristics, etc. However, titanium alloys are difficult-to-machine materials. Tool wear is thus of great importance to understand and quantitatively predict tool life. In this study, the wear of coated carbide tool in milling Ti-6Al-4V alloy was assessed by characterization of the worn tool cutting edge. Furthermore, a tool wear model for end milling cutter is established with considering the joint effect of cutting speed and feed rate for characterizing tool wear process and predicting tool wear. Based on the proposed tool wear model equivalent tool life is put forward to evaluate cutting tool life under different cutting conditions. The modelling process of tool wear is given and discussed according to the specific conditions. Experimental work and validation are performed for coated carbide tool milling Ti-6Al-4V alloy.


Author(s):  
Anshuman Das ◽  
Miyaz Kamal ◽  
Sudhansu Ranjan Das ◽  
Saroj Kumar Patel ◽  
Asutosh Panda ◽  
...  

AISI D6 (hardness 65 HRC) is one of the hard-to-cut steel alloys and commonly used in mould and die making industries. In general, CBN and PCBN tools are used for machining hardened steel but its higher cost makes the use for limited applications. However, the usefulness of carbide tool with selective coatings is the best substitute having comparable tool life, and in terms of cost is approximately one-tenth of CBN tool. The present study highlights a detailed analysis on machinability investigation of hardened AISI D6 alloy die steel using newly developed SPPP-AlTiSiN coated carbide tools in finish dry turning operation. In addition, a comparative assessment has been performed based on the effectiveness of cutting tool performance of nanocomposite coating of AlTiN deposited by hyperlox PVD technique and a coating of AlTiSiN deposited by scalable pulsed power plasma (SPPP) technique. The required number of machining trials under varied cutting conditions (speed, depth of cut, feed) were based on L16 orthogonal array design which investigated the crater wear, flank wear, surface roughness, chip morphology, and cutting force in hard turning. Out of the two cutting tools, newly-developed nanocomposite (SPPP-AlTiSiN) coated carbide tool promises an improved surface finish, minimum cutting force, longer tool life due to lower value of crater & flank wears, and considerable improvement in tool life (i.e., by 47.83%). At higher cutting speeds, the crater wear length and flank wear increases whereas the surface roughness, crater wear width and cutting force decreases. Chip morphology confirmed the formation of serrated type saw tooth chips.


Sign in / Sign up

Export Citation Format

Share Document