scholarly journals Research and results of mathematical modeling of block ion-exchange water treatment plants operating modes and regeneration

2022 ◽  
Vol 2150 (1) ◽  
pp. 012002
Author(s):  
A A Chichirov ◽  
A A Filimonova ◽  
N D Chichirova ◽  
O E Babikov

Abstract The problem of water treatment at thermal power plants using ion-exchange technologies is a multi-parameter task. Mathematical modeling is essential for research and optimization of ion exchange technology. The analysis of hydrodynamic processes during the operation of ion-exchange filters was carried out according to the developed mathematical model. Also, a physicochemical analysis of the composition of the water treatment plant solutions under real conditions was carried out. It is shown that in the cationite and anionite filters, the flow movement occurs mainly in a mixed hydrodynamic mode. This mode of regeneration and the filter design do not allow achieving the minimum consumption of the reagent for regeneration, the minimum volume of wastewater and the maximum output of demineralized water. The mixed mode of the anion exchange filter operation allows division of the outgoing solution flow into fractions, which can be successfully used in the TPP water cycle.

2019 ◽  
Vol 124 ◽  
pp. 01029
Author(s):  
A. A. Filimonova ◽  
N. D. Chichirova ◽  
A. A. Chichirov ◽  
A. I. Minibaev

The main sources of highly concentrated multicomponent technological solutions at thermal power plants (TPPs) are water treatment plants. Analysis of operation of the ion-exchange water treatment plant at the Nizhnekamsk Thermal Power Plant-1 showed that half of alkali supplied to regeneration of the anion-exchange alkali filters is not used, but is discharged for neutralization and then to wastewater. Due to the fact that the cost of alkali used in technological processes is quite high, it is economically feasible to process the alkaline waste with the alkali extraction and its reuse in the production cycle. The article presents the experimental results on the electro-membrane separation of alkaline waste regeneration solutions and wash water after anion-exchange filter regeneration. The revealed differences in the selectivity of various ion transfer through the electrodialysis apparatus membranes, depending on time and amount of transmitted electricity, allowed us to establish the possibility of obtaining an alkaline solution purified from impurities.


2020 ◽  
Vol 216 ◽  
pp. 01083
Author(s):  
Alena Vlasova ◽  
Sergei Vlasov

АnnotationTechnological installation of waste water disposalafter washing of H-cation filters is quite promising idea of avoiding penalties and reuse of waste water in cycle of thermal power plants (TPP). The development of this unit is based on reactions that occur when mixing several TPP water treatment plant wastes, namely, neutralization and exchange-type reactions. As neutralizing reagent, the sludge of the water treatment plant is used, which consists of CaCO3 by 80%. This method reduces the concentration of sul-phate-containing components in wastewater to a standard level, and also provides neutral wastewater with-out the use of additional purchase reagents.


2013 ◽  
Vol 726-731 ◽  
pp. 1895-1900
Author(s):  
Lian Qing Yin ◽  
Zhi Wei Ai ◽  
Cui Jiao

According to reclaimed water in the sewage treatment plant is poor , quality of circulating water is difficult to control, which caused the water tower water quantity and large water treatment medicament consumption and so on,we made an analysis.


Author(s):  
S. Z. J. Zaidi ◽  
A. Shafeeq ◽  
M. Sajjad ◽  
S. Hassan ◽  
M. S. Aslam ◽  
...  

AbstractThe present study reports the characterization of reverse osmosis (RO) technology at water treatment plant Cogen-2 in paper and Board mills, Pakistan. RO is a commonly used process to obtain de-mineralized water for high-pressure boiler operation in thermal power plants. Scaling and fouling in three-stage RO plants is a major challenge in chemical industry due to the use of raw brackish water in the power plant of paper and board mills. In our study, the feed water quality of RO was changed from soft water to raw water to make it economical. The cleaning frequency was increased three times than normal, which was unsafe for operation and it was required to control scaling and fouling to achieve the desired result. Differential pressures behavior of all stages for 2-month data was observed without acid treatment, and the results of Langelier Saturation Index (LSI) control parameters (temperature, pH, total dissolved solids, calcium hardness, and alkalinity) clearly showed the abnormality. To optimize scaling and fouling of RO, the LSI factor was controlled in total reject water for the next 2 months by acid treatment in feed water. Duration of chemical cleaning and membranes’ life has been extended by fouling and scaling control. Understanding the effect of operational parameters in RO membranes is essential in water process engineering due to its broad applications in drinking water, sanitation, seawater, desalination process, wastewater treatment, and boiler feed water operation. The product flow increased from 18.3 to 19.9 m3/h, and this was due to a decrease in the rejection flow from 8.2 to 6.7 m3/h. The total reject stream pressure also increased from 8.1 to 9 bar. A lower value of LSI of 1.6 is obtained in the reject water stream after the acid treatment.


2006 ◽  
Vol 130 (1-3) ◽  
pp. 173-185
Author(s):  
Gurdeep Singh ◽  
S. K. Gupta ◽  
Ritesh Kumar ◽  
M. Sunderarajan

2018 ◽  
Vol 54 (2) ◽  
pp. 142-160 ◽  
Author(s):  
Kenneth Brezinski ◽  
Beata Gorczyca ◽  
Mehrnaz Sadrnourmohammadi

Abstract The objectives of this study were to investigate the ability for ion-exchange (IX) to control trihalomethane (THM) formation, and to act as a potential treatment addition (upgrade) to a conventional treatment plant in Rainy River Ontario, Canada. The primary goal was to investigate the total organic carbon (TOC) and trihalomethane formation potential (THMFP) removal as a function of resin dose; and note the relative improvements over current conventional plant operation. IX resin (DOWEX TAN-1, Purolite 502P and 860, and Amberlite PWA9) removed 68–72% of TOC and 30–40% THMFP from the conventionally filtered water. Fixed-bed fluidized bed contactor was used to investigate the TOC/THMFP breakthrough for the DOWEX TAN-1 resin. Complete resin breakthrough occurred followed by 1,275 and 1,075 bed volumes for TOC and THMFP, respectively. Breakthrough output following 1,000 treated bed volumes was noted as the point at which THMFP levels reach the 0.1 mg L–1 water quality standard threshold required by Canadian regulators. High exchange capacities were recorded for the TAN-1 (3.02 mg mL–1) and PWA9 (2.03 mg mL–1) resins – both of which contain styrene backbones. The results produced in the bench-scale experiments were used very successfully in a full-scale upgrade of the Rainy River water treatment plant.


2018 ◽  
Vol 245 ◽  
pp. 12007
Author(s):  
Tatiana Germanova

This study was conducted with the aim of preliminary assessment of the total use of the working exchange capacity of cation-exchangers during ion-exchange filtration of surface waters. The chemical composition of natural waters in Russia depends on many factors, which affects the performance indicators during operation of water treatment equipment. Comparison of geochemical indicators of natural waters of the Ob River basin at specific locations of water withdrawal in the Ural Federal District of Russia was carried out. For several compositions of natural waters, the calculation of two-stage ion-exchange filtration in the water treatment scheme for heat and power plants has been carried out. The possibility of rational use of ion-exchange filtration at the first stage of water purification and low efficiency of the use of ion-exchange filtration at the second stage of filtration for these plants is shown.


Sign in / Sign up

Export Citation Format

Share Document