scholarly journals Design steps for bulk micro machined single axis silicon capacitive accelerometer with optimised device dimensions

2006 ◽  
Vol 34 ◽  
pp. 722-727 ◽  
Author(s):  
Vivek Agarwal ◽  
Tarun K Bhattacharayya ◽  
Subhadeep Banik
Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4539
Author(s):  
Roberto de Fazio ◽  
Elisa Perrone ◽  
Ramiro Velázquez ◽  
Massimo De Vittorio ◽  
Paolo Visconti

The evolution of low power electronics and the availability of new smart materials are opening new frontiers to develop wearable systems for medical applications, lifestyle monitoring, and performance detection. This paper presents the development and realization of a novel smart insole for monitoring the plantar pressure distribution and gait parameters; indeed, it includes a piezoresistive sensing matrix based on a Velostat layer for transducing applied pressure into an electric signal. At first, an accurate and complete characterization of Velostat-based pressure sensors is reported as a function of sizes, support material, and pressure trend. The realization and testing of a low-cost and reliable piezoresistive sensing matrix based on a sandwich structure are discussed. This last is interfaced with a low power conditioning and processing section based on an Arduino Lilypad board and an analog multiplexer for acquiring the pressure data. The insole includes a 3-axis capacitive accelerometer for detecting the gait parameters (swing time and stance phase time) featuring the walking. A Bluetooth Low Energy (BLE) 5.0 module is included for transmitting in real-time the acquired data toward a PC, tablet or smartphone, for displaying and processing them using a custom Processing® application. Moreover, the smart insole is equipped with a piezoelectric harvesting section for scavenging energy from walking. The onfield tests indicate that for a walking speed higher than 1 ms−1, the device’s power requirements (i.e., ) was fulfilled. However, more than 9 days of autonomy are guaranteed by the integrated 380-mAh Lipo battery in the total absence of energy contributions from the harvesting section.


Author(s):  
Puja Kumari ◽  
Pankaj Sarkar ◽  
Rowdra Ghatak

Abstract A compact ultrawideband (UWB) bandpass filter (BPF) is designed by harnessing the efficacy of a Pythagorean tree fractal shape stub-loaded resonator. The design inherently provides the passband transmission poles, which make it convenient to be used in wide passband filtering circuits. The number and the position of the resonating modes can be controlled by increasing the iterations of the Pythagorean tree, as analyzed using odd- and even-mode analysis. Design steps of the BPF are detailed. The designed UWB BPF takes up a small circuit area of (12.13 × 9.59) mm2. The proposed design is fabricated and measured to verify the simulated results. The stopband is extended up to 17.5 GHz with a maximum attenuation of 15 dB.


2021 ◽  
Vol 30 (1) ◽  
pp. 19-27
Author(s):  
Kumar Gomathi ◽  
Arunachalam Balaji ◽  
Thangaraj Mrunalini

Abstract This paper deals with the design and optimization of a differential capacitive micro accelerometer for better displacement since other types of micro accelerometer lags in sensitivity and linearity. To overcome this problem, a capacitive area-changed technique is adopted to improve the sensitivity even in a wide acceleration range (0–100 g). The linearity is improved by designing a U-folded suspension. The movable mass of the accelerometer is designed with many fingers connected in parallel and suspended over the stationary electrodes. This arrangement gives the differential comb-type capacitive accelerometer. The area changed capacitive accelerometer is designed using Intellisuite 8.6 Software. Design parameters such as spring width and radius, length, and width of the proof mass are optimized using Minitab 17 software. Mechanical sensitivity of 0.3506 μm/g and Electrical sensitivity of 4.706 μF/g are achieved. The highest displacement of 7.899 μm is obtained with a cross-axis sensitivity of 0.47%.


2016 ◽  
Vol 26 (11) ◽  
pp. 115001 ◽  
Author(s):  
Hao Qu ◽  
Huijun Yu ◽  
Wu Zhou ◽  
Bei Peng ◽  
Peng Peng ◽  
...  

1995 ◽  
Author(s):  
Beatrice Wenk ◽  
J. Ramos-Martos ◽  
M. Fehrenbach ◽  
P. Lange ◽  
Michael Offenberg ◽  
...  

2012 ◽  
Vol 433-440 ◽  
pp. 3080-3085 ◽  
Author(s):  
Huan Yuan Chen ◽  
Yong Jun Xie ◽  
Dong Song Yan ◽  
Hao Liu ◽  
Jing Ming Li

In order to enhance the working performance of micro-capacitive accelerometer in high temperature environment, the structure topology optimization of a micro-capacitive accelerometer is proposed. After the study of thermo-structural coupled governing equations and sensitivity analysis, the mass-block and elastic-beam structure of comb micro-capacitive accelerometer topology optimization model is established. Then the optimal topology forms of mass-block and elastic-beam structure are obtained with the MMA (method of moving asymptotes) method. At last, the calculating results indicate that the maximum deformation at acceleration detection direction is only 22nm at the operating temperature range of 0~300°C, which less than the maximum deformation of the limit value (25nm), and provides a reliable way for innovative design of micro-capacitive accelerometer.


Sign in / Sign up

Export Citation Format

Share Document