scholarly journals Experience with highly-parallel software for the storage system of the ATLAS Experiment at CERN

2012 ◽  
Vol 396 (1) ◽  
pp. 012051
Author(s):  
T Colombo ◽  
W Vandelli
2021 ◽  
Vol 251 ◽  
pp. 02006
Author(s):  
Mikhail Borodin ◽  
Alessandro Di Girolamo ◽  
Edward Karavakis ◽  
Alexei Klimentov ◽  
Tatiana Korchuganova ◽  
...  

The High Luminosity upgrade to the LHC, which aims for a tenfold increase in the luminosity of proton-proton collisions at an energy of 14 TeV, is expected to start operation in 2028/29 and will deliver an unprecedented volume of scientific data at the multi-exabyte scale. This amount of data has to be stored, and the corresponding storage system must ensure fast and reliable data delivery for processing by scientific groups distributed all over the world. The present LHC computing and data management model will not be able to provide the required infrastructure growth, even taking into account the expected hardware technology evolution. To address this challenge, the Data Carousel R&D project was launched by the ATLAS experiment in the fall of 2018. State-of-the-art data and workflow management technologies are under active development, and their current status is presented here.


Author(s):  
Y. Kokubo ◽  
W. H. Hardy ◽  
J. Dance ◽  
K. Jones

A color coded digital image processing is accomplished by using JEM100CX TEM SCAN and ORTEC’s LSI-11 computer based multi-channel analyzer (EEDS-II-System III) for image analysis and display. Color coding of the recorded image enables enhanced visualization of the image using mathematical techniques such as compression, gray scale expansion, gamma-processing, filtering, etc., without subjecting the sample to further electron beam irradiation once images have been stored in the memory.The powerful combination between a scanning electron microscope and computer is starting to be widely used 1) - 4) for the purpose of image processing and particle analysis. Especially, in scanning electron microscopy it is possible to get all information resulting from the interactions between the electron beam and specimen materials, by using different detectors for signals such as secondary electron, backscattered electrons, elastic scattered electrons, inelastic scattered electrons, un-scattered electrons, X-rays, etc., each of which contains specific information arising from their physical origin, study of a wide range of effects becomes possible.


Sign in / Sign up

Export Citation Format

Share Document