scholarly journals Optimising network transfers to and from Queen Mary University of London, a large WLCG tier-2 grid site

2014 ◽  
Vol 513 (6) ◽  
pp. 062048 ◽  
Author(s):  
C J Walker ◽  
D P Traynor ◽  
D T Rand ◽  
T S Froy ◽  
S L Lloyd
Keyword(s):  
Tier 2 ◽  
2009 ◽  
Author(s):  
Christine R. Mielenz ◽  
Maryann Waugh ◽  
Wendy Iwaszuk

2020 ◽  
Vol 13 (5) ◽  
pp. 999-1007
Author(s):  
Karthikeyan Periyasami ◽  
Arul Xavier Viswanathan Mariammal ◽  
Iwin Thanakumar Joseph ◽  
Velliangiri Sarveshwaran

Background: Medical image analysis application has complex resource requirement. Scheduling Medical image analysis application is the complex task to the grid resources. It is necessary to develop a new model to improve the breast cancer screening process. Proposed novel Meta scheduler algorithm allocate the image analyse applications to the local schedulers and local scheduler submit the job to the grid node which analyses the medical image and generates the result sent back to Meta scheduler. Meta schedulers are distinct from the local scheduler. Meta scheduler and local scheduler have the aim at resource allocation and management. Objective: The main objective of the CDAM meta-scheduler is to maximize the number of jobs accepted. Methods: In the beginning, the user sends jobs with the deadline to the global grid resource broker. Resource providers sent information about the available resources connected in the network at a fixed interval of time to the global grid resource broker, the information such as valuation of the resource and number of an available free resource. CDAM requests the global grid resource broker for available resources details and user jobs. After receiving the information from the global grid resource broker, it matches the job with the resources. CDAM sends jobs to the local scheduler and local scheduler schedule the job to the local grid site. Local grid site executes the jobs and sends the result back to the CDAM. Success full completion of the job status and resource status are updated into the auction history database. CDAM collect the result from all local grid site and return to the grid users. Results: The CDAM was simulated using grid simulator. Number of jobs increases then the percentage of the jobs accepted also decrease due to the scarcity of resources. CDAM is providing 2% to 5% better result than Fair share Meta scheduling algorithm. CDAM algorithm bid density value is generated based on the user requirement and user history and ask value is generated from the resource details. Users who, having the most significant deadline are generated the highest bid value, grid resource which is having the fastest processor are generated lowest ask value. The highest bid is assigned to the lowest Ask it means that the user who is having the most significant deadline is assigned to the grid resource which is having the fastest processor. The deadline represents a time by which the user requires the result. The user can define the deadline by which the results are needed, and the CDAM will try to find the fastest resource available in order to meet the user-defined deadline. If the scheduler detects that the tasks cannot be completed before the deadline, then the scheduler abandons the current resource, tries to select the next fastest resource and tries until the completion of application meets the deadline. CDAM is providing 25% better result than grid way Meta scheduler this is because grid way Meta scheduler allocate jobs to the resource based on the first come first served policy. Conclusion: The proposed CDAM model was validated through simulation and was evaluated based on jobs accepted. The experimental results clearly show that the CDAM model maximizes the number of jobs accepted than conventional Meta scheduler. We conclude that a CDAM is highly effective meta-scheduler systems and can be used for an extraordinary situation where jobs have a combinatorial requirement.


2021 ◽  
pp. 109830072199608
Author(s):  
Angus Kittelman ◽  
Sterett H. Mercer ◽  
Kent McIntosh ◽  
Robert Hoselton

The purpose of this longitudinal study was to examine patterns in implementation of Tier 2 and 3 school-wide positive behavioral interventions and supports (SWPBIS) systems to identify timings of installation that led to higher implementation of advanced tiers. Extant data from 776 schools in 27 states reporting on the first 3 years of Tier 2 implementation and 359 schools in 23 states reporting on the first year of Tier 3 implementation were analyzed. Using structural equation modeling, we found that higher Tier 1 implementation predicted subsequent Tier 2 and Tier 3 implementation. In addition, waiting 2 or 3 years after initial Tier 1 implementation to launch Tier 2 systems predicted higher initial Tier 2 implementation (compared with implementing the next year). Finally, we found that launching Tier 3 systems after Tier 2 systems, compared with launching both tiers simultaneously, predicted higher Tier 2 implementation in the second and third year, so long as Tier 3 systems were launched within 3 years of Tier 2 systems. These findings provide empirical guidance for when to launch Tier 2 and 3 systems; however, we emphasize that delays in launching advanced systems should not equate to delays in more intensive supports for students.


2021 ◽  
pp. 004723952110160
Author(s):  
Kristen L. Granger ◽  
Maureen A. Conroy ◽  
Kevin S. Sutherland ◽  
Edward G. Feil ◽  
Jessica Wright ◽  
...  

The purpose of this article is to describe the adaptation process of an evidence-based early childhood Tier-2 intervention program, BEST in CLASS-Prekindergarten, from a face-to-face format to a web-based delivery format called BEST in CLASS-Web. We describe the three-phase iterative development process used to adapt the parent program for delivery via the web. Activities in these phases included focus groups, interviews, an expert panel review, alpha and beta testing (Phase 1), feasibility testing (Phase 2), and a pilot promise study (Phase 3). Each phase included a series of refinements and improvements to materials based on data and stakeholder feedback. Lessons learned and implications for developing and implementing professional development services via online platforms are discussed.


2021 ◽  
Vol 13 (15) ◽  
pp. 8420
Author(s):  
Peter W. Sorensen ◽  
Maria Lourdes D. Palomares

To assess whether and how socioeconomic factors might be influencing global freshwater finfisheries, inland fishery data reported to the FAO between 1950 and 2015 were grouped by capture and culture, country human development index, plotted, and compared. We found that while capture inland finfishes have greatly increased on a global scale, this trend is being driven almost entirely by poorly developed (Tier-3) countries which also identify only 17% of their catch. In contrast, capture finfisheries have recently plateaued in moderately-developed (Tier-2) countries which are also identifying 16% of their catch but are dominated by a single country, China. In contrast, reported capture finfisheries are declining in well-developed (Tier-1) countries which identify nearly all (78%) of their fishes. Simultaneously, aquacultural activity has been increasing rapidly in both Tier-2 and Tier-3 countries, but only slowly in Tier-1 countries; remarkably, nearly all cultured species are being identified by all tier groups. These distinctly different trends suggest that socioeconomic factors influence how countries report and conduct capture finfisheries. Reported rapid increases in capture fisheries are worrisome in poorly developed countries because they cannot be explained and thus these fisheries cannot be managed meaningfully even though they depend on them for food. Our descriptive, proof-of-concept study suggests that socioeconomic factors should be considered in future, more sophisticated efforts to understand global freshwater fisheries which might include catch reconstruction.


Sign in / Sign up

Export Citation Format

Share Document