scholarly journals The surface tension effect on viscous liquid spreading along a superhydrophobic surface

2017 ◽  
Vol 788 ◽  
pp. 012003 ◽  
Author(s):  
A V Aksenov ◽  
A D Sudarikova ◽  
I S Chicherin
2008 ◽  
Vol 609 ◽  
pp. 377-410 ◽  
Author(s):  
JAMES Q. FENG

The steady axisymmetric flow of viscous liquid relative to a gas bubble due to its buoyancy-driven motion in a round tube is computed by solving the nonlinear Navier–Stokes equations using a Galerkin finite-element method with a boundary-fitted mesh. When the bubble is relatively small compared with the tube size (e.g. the volume-equivalent radius of the bubble is less than a quarter of the tube radius R), the bubble exhibits similar behaviour to one moving in an extended liquid, developing a spherical-cap shape with increasing Reynolds number (Re) if the capillary number is not too small. The long-bubble (also known as a Taylor bubble) characteristics can be observed with bubbles of volume-equivalent radius greater than the tube radius, especially when the surface tension effect is relatively weak (e.g. for Weber number We greater than unity). The computed values of Froude number Fr for most cases agree well with the correlation formulae derived from experimental data for long bubbles, and even with (short) bubbles of volume-equivalent radius three-quarters of the tube radius. All of the computed surface profiles of long bubbles exhibit a prolate-like nose shape, yet various tail shapes can be obtained by adjusting the parameter values of Re and We. At large Weber number (e.g. We=10), the bubble tail forms a concave profile with a gas ‘cup’ developed at small Re and a ‘skirt’ at large Re with sharply curved rims. For We≤1, the bubble tail profile appears rounded without large local curvatures, although a slightly concave tail may develop at large Re. non-uniform annular film adjacent to the tube wall is commonly observed when Weber number is small, especially for bubbles of volume <3πR3, suggesting that the surface tension effect can play a complicated role. Nonetheless the computed value of Fr is found to be generally independent of the bubble length for bubbles of volume-equivalent radius greater than the tube radius. If the bubble length reaches about 2.5 tube radii, the value of its frontal radius becomes basically the same as that for long bubbles of much larger volume. An examination of the distribution of the z-component of traction along the bubble surface reveals the basic mechanism for long bubbles rising at a terminal velocity that is independent of bubble volume.


Science ◽  
1930 ◽  
Vol 72 (1862) ◽  
pp. 244-245
Author(s):  
Wm. M. Grosvenor

Author(s):  
Auro Ashish Saha ◽  
Sushanta K. Mitra

A three-dimensional numerical simulation of flow in patterned microchannel with alternate layers of hydrophilic and hydrophobic surfaces at the bottom wall is studied here. Surface characteristics of the microchannel are accounted by specifying the contact angle and the surface tension of the fluid. Meniscus profiles with varying amplitude and shapes are obtained under the different specified surface conditions. Flow instability increases as the fluid at the bottom wall traverses alternately from hydrophilic region to hydrophobic region. To understand the surface tension effect of the side walls, a two-dimensional numerical study has also been carried out for the microchannel and the results are compared with three-dimensional simulation. The surface tension effect of the side walls enhances the capillary effect for three-dimensional case.


2021 ◽  
Vol 9 (11) ◽  
pp. 1253
Author(s):  
Yuriy N. Savchenko ◽  
Georgiy Y. Savchenko ◽  
Yuriy A. Semenov

Cavity flow around a wedge with rounded edges was studied, taking into account the surface tension effect and the Brillouin–Villat criterion of cavity detachment. The liquid compressibility and viscosity were ignored. An analytical solution was obtained in parametric form by applying the integral hodograph method. This method gives the possibility of deriving analytical expressions for complex velocity and for potential, both defined in a parameter plane. An expression for the curvature of the cavity boundary was obtained analytically. By using the dynamic boundary condition on the cavity boundary, an integral equation in the velocity modulus was derived. The particular case of zero surface tension is a special case of the solution. The surface tension effect was computed over a wide range of the Weber number for various degrees of cavitation development. Numerical results are presented for the flow configuration, the drag force coefficient, and the position of cavity detachment. It was found that for each radius of the edges, there exists a critical Weber number, below which the iterative solution process fails to converge, so a steady flow solution cannot be computed. This critical Weber number increases as the radius of the edge decreases. As the edge radius tends to zero, the critical Weber number tends to infinity, or a steady cavity flow cannot be computed at any finite Weber number in the case of sharp wedge edges. This shows some limitations of the model based on the Brillouin–Villat criterion of cavity detachment.


Micromachines ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 978
Author(s):  
Yi Zhang ◽  
Yang Gan ◽  
Liwen Zhang ◽  
Deyuan Zhang ◽  
Huawei Chen

Unidirectional liquid spreading without energy input is of significant interest for the broad applications in diverse fields such as water harvesting, drop transfer, oil–water separation and microfluidic devices. However, the controllability of liquid motion and the simplification of manufacturing process remain challenges. Inspired by the peristome of Nepenthes alata, a surface-tension-confined (STC) channel with biomimetic microcavities was fabricated facilely through UV exposure photolithography and partial plasma treatment. Perfect asymmetric liquid spreading was achieved by combination of microcavities and hydrophobic boundary, and the stability of pinning effect was demonstrated. The influences of structural features of microcavities on both liquid spreading and liquid pinning were investigated and the underlying mechanism was revealed. We also demonstrated the spontaneous unidirectional transport of liquid in 3D space and on tilting slope. In addition, through changing pits arrangement and wettability pattern, complex liquid motion paths and microreactors were realized. This work will open a new way for liquid manipulation and lab-on-chip applications.


Sign in / Sign up

Export Citation Format

Share Document