scholarly journals Cavity Detachment from a Wedge with Rounded Edges and the Surface Tension Effect

2021 ◽  
Vol 9 (11) ◽  
pp. 1253
Author(s):  
Yuriy N. Savchenko ◽  
Georgiy Y. Savchenko ◽  
Yuriy A. Semenov

Cavity flow around a wedge with rounded edges was studied, taking into account the surface tension effect and the Brillouin–Villat criterion of cavity detachment. The liquid compressibility and viscosity were ignored. An analytical solution was obtained in parametric form by applying the integral hodograph method. This method gives the possibility of deriving analytical expressions for complex velocity and for potential, both defined in a parameter plane. An expression for the curvature of the cavity boundary was obtained analytically. By using the dynamic boundary condition on the cavity boundary, an integral equation in the velocity modulus was derived. The particular case of zero surface tension is a special case of the solution. The surface tension effect was computed over a wide range of the Weber number for various degrees of cavitation development. Numerical results are presented for the flow configuration, the drag force coefficient, and the position of cavity detachment. It was found that for each radius of the edges, there exists a critical Weber number, below which the iterative solution process fails to converge, so a steady flow solution cannot be computed. This critical Weber number increases as the radius of the edge decreases. As the edge radius tends to zero, the critical Weber number tends to infinity, or a steady cavity flow cannot be computed at any finite Weber number in the case of sharp wedge edges. This shows some limitations of the model based on the Brillouin–Villat criterion of cavity detachment.

1999 ◽  
Vol 383 ◽  
pp. 307-326 ◽  
Author(s):  
CHRISTOPHE CLANET ◽  
JUAN C. LASHERAS

We consider the critical Weber number (Wec≡ ρV20D/σ) at which the transition from dripping to jetting occurs when a Newtonian liquid of density ρ and surface tension σ is injected with a velocity V0 through a tube of diameter D downward into stagnant air, under gravity g. We extend Taylor's (1959) model for the recession speed of a free edge, and obtain in the inviscid limit an exact solution which includes gravity and inertia effects. This solution provides a criterion for the transition which is shown to occur at a critical Weber numberformula herewhere Bo and Boo are the Bond numbers (Bo≡[ρgD2/(2σ)]1/2), respectively based on the inside and outside diameter of the tube, and K is a constant equal to 0.37 for the case of water injected in air. This critical Weber number is shown to be in good agreement with existing experimental values as well as with new measurements performed over a wide range of Bond numbers.


2013 ◽  
Vol 737 ◽  
pp. 132-145 ◽  
Author(s):  
Y. A. Semenov ◽  
G. X. Wu ◽  
J. M. Oliver

AbstractA complete nonlinear self-similar solution that characterizes the impact of two liquid wedges symmetric about the velocity direction is obtained assuming the liquid to be ideal and incompressible, with negligible surface tension and gravity effects. Employing the integral hodograph method, analytical expressions for the complex potential and for its derivatives are derived. The boundary value problem is reduced to two integro-differential equations in terms of the velocity modulus and angle to the free surface. Numerical results are presented in a wide range of wedge angles for the free surface shapes, streamline patterns, and pressure distributions. It is found that the splash jet may cause secondary impacts. The regions with and without secondary impacts in the plane of the wedge angles are determined.


Author(s):  
Athanassios A. Dimas

The effect of surface tension on the evolution of weak spilling breakers is studied by performing large-wave simulations (LWS) of the free-surface flow developing by the interaction of a gravity free-surface wave and a surface shear-layer current. The flow models the evolution of gravity waves under the influence of wind shear. The surface tension modifies the dynamic free-surface condition and its effect depends on the dimensionless Weber number. The Euler equations are filtered according to the LWS formulation and solved numerically by a spectral method and a fractional-time-step scheme. The results indicate a stronger surface tension effect with decreasing Weber number values and increasing initial wave height. Specifically, decreasing the Weber number alters the size and shape of the characteristic bulge of spilling breakers and the toe position resulting in sharper slopes and angles of the free surface profile. The spiller wave height is reduced with decreasing Weber number.


1957 ◽  
Vol 3 (1) ◽  
pp. 27-47 ◽  
Author(s):  
R. A. Hartunian ◽  
W. R. Sears

The instability of small gas bubbles moving uniformly in various liquids is investigated experimentally and theoretically.The experiments consist of the measurement of the size and terminal velocity of bubbles at the threshold of instability in various liquids, together with the physical properties of the liquids. The results of the experiments indicate the existence of a universal stability curve. The nature of this curve strongly suggests that there are two separate criteria for predicting the onset of instability, namely, a critical Reynolds number (202) and a critical Weber number (1.26). The former criterion appears to be valid for bubbles moving uniformly in liquids containing impurities and in the somewhat more viscous liquids, whereas the latter criterion is for bubbles moving in pure, relatively inviscid liquids.The theoretical analysis is directed towards an investigation of the possibility of the interaction of surface tension and hydrodynamic pressure leading to unstable motions of the bubble, i.e. the existence of a critical Weber number. Accordingly, the theoretical model assumes the form of a general perturbation in the shape of a deformable sphere moving with uniform velocity in an inviscid, incompressible fluid medium of infinite extent. The calculations lead to divergent solutions above a certain Weber number, indicating, at least qualitatively, that the interaction of surface tension and hydrodynamic pressure can result in instabilities of the bubble motion.A subsequent investigation of the time-independent equations, however, shows the presence of large deformations in shape of the bubble prior to the onset of unstable motion, which is not compatible with the approximation of perturbing an essentially spherical bubble. This deformation and its possible effects on the stability calculation are therefore determined by approximate methods. From this it is concluded that the deformation of the bubble serves to introduce quantitative, but not qualitative, changes in the stability calculation.


2008 ◽  
Vol 609 ◽  
pp. 377-410 ◽  
Author(s):  
JAMES Q. FENG

The steady axisymmetric flow of viscous liquid relative to a gas bubble due to its buoyancy-driven motion in a round tube is computed by solving the nonlinear Navier–Stokes equations using a Galerkin finite-element method with a boundary-fitted mesh. When the bubble is relatively small compared with the tube size (e.g. the volume-equivalent radius of the bubble is less than a quarter of the tube radius R), the bubble exhibits similar behaviour to one moving in an extended liquid, developing a spherical-cap shape with increasing Reynolds number (Re) if the capillary number is not too small. The long-bubble (also known as a Taylor bubble) characteristics can be observed with bubbles of volume-equivalent radius greater than the tube radius, especially when the surface tension effect is relatively weak (e.g. for Weber number We greater than unity). The computed values of Froude number Fr for most cases agree well with the correlation formulae derived from experimental data for long bubbles, and even with (short) bubbles of volume-equivalent radius three-quarters of the tube radius. All of the computed surface profiles of long bubbles exhibit a prolate-like nose shape, yet various tail shapes can be obtained by adjusting the parameter values of Re and We. At large Weber number (e.g. We=10), the bubble tail forms a concave profile with a gas ‘cup’ developed at small Re and a ‘skirt’ at large Re with sharply curved rims. For We≤1, the bubble tail profile appears rounded without large local curvatures, although a slightly concave tail may develop at large Re. non-uniform annular film adjacent to the tube wall is commonly observed when Weber number is small, especially for bubbles of volume <3πR3, suggesting that the surface tension effect can play a complicated role. Nonetheless the computed value of Fr is found to be generally independent of the bubble length for bubbles of volume-equivalent radius greater than the tube radius. If the bubble length reaches about 2.5 tube radii, the value of its frontal radius becomes basically the same as that for long bubbles of much larger volume. An examination of the distribution of the z-component of traction along the bubble surface reveals the basic mechanism for long bubbles rising at a terminal velocity that is independent of bubble volume.


1988 ◽  
Vol 196 ◽  
pp. 205-222 ◽  
Author(s):  
Paul A. Durbin

The dislodging by dynamic pressure forces of a drop adhered by surface tension to a plane is analysed. An integro-differential equation describing the drop shape is solved numerically and the critical Weber number as a function of contact angle hysteresis is found.


Author(s):  
Y. Wang ◽  
C. Shu

Head-on collisions of binary micro-droplets are of great interest in both academic research and engineering applications. Numerical simulation of this problem is challenging due to complex interfacial changes and large density ratio between different fluids. In this work, the recently proposed lattice Boltzmann flux solver (LBFS) is applied to study this problem. The LBFS is a finite volume method for the direct update of macroscopic flow variables at cell centers. The fluxes of the LBFS are reconstructed at each cell interface through lattice moments of density distribution functions (DDFs). As compared with conventional multiphase lattice Boltzmann method, the LBFS can be easily applied to study complex multiphase flows with large density ratio. In addition, external forces can be implemented more conveniently and the tie-up between the time step and mesh spacing is also removed. Moreover, it can deal with complex boundary conditions directly as those do in the conventional Navier-Stokes solvers. At first, the reliability of the LBFS is validated by simulating a micro-droplet impacting on a dry surface at density ratio 832 (air to water). The obtained result agrees well with experimental measurement. After that, numerical simulations of head-on collisions of two micro droplets are carried out to examine different collisional behaviors in a wide range of Reynolds numbers and Weber numbers of 100 ≤ Re ≤ 2000 and 10 ≤ We ≤ 500. A phase diagram parameterized by these two control parameters is obtained to classify the outcomes of these collisions. It is shown that, at low Reynolds number (Re=100), two droplets will be coalescent into a bigger one for all considered Weber numbers. With the increase of the Reynolds number, separation of the collision into multiple droplets appears and the critical Weber number for separation is decreased. When the Reynolds number is sufficiently high, the critical Weber number for separation is between 20 and 25.


2005 ◽  
Vol 473-474 ◽  
pp. 429-434 ◽  
Author(s):  
Olga Verezub ◽  
György Kaptay ◽  
Tomiharu Matsushita ◽  
Kusuhiro Mukai

Penetration of model solid particles (polymer, teflon, nylon, alumina) into transparent model liquids (distilled water and aqueous solutions of KI) were recorded by a high speed (500 frames per second) camera, while the particles were dropped from different heights vertically on the still surface of the liquids. In all cases a cavity has been found to form behind the solid particle, penetrating into the liquid. For each particle/liquid combination the critical dropping height has been measured, above which the particle was able to penetrate into the bulk liquid. Based on this, the critical impact particle velocity, and also the critical Weber number of penetration have been established. The critical Weber number of penetration was modelled as a function of the contact angle, particle size and the ratio of the density of solid particles to the density of the liquid.


Sign in / Sign up

Export Citation Format

Share Document