scholarly journals Strongly localized dark modes in binary discrete media with cubic-quintic nonlinearity within the anti-continuum limit

2017 ◽  
Vol 949 ◽  
pp. 012013
Author(s):  
L Abdul Taib ◽  
M S Abdul Hadi ◽  
B A Umarov
2005 ◽  
Vol 5 (3) ◽  
pp. 223-241
Author(s):  
A. Carpio ◽  
G. Duro

AbstractUnstable growth phenomena in spatially discrete wave equations are studied. We characterize sets of initial states leading to instability and collapse and obtain analytical predictions for the blow-up time. The theoretical predictions are con- trasted with the numerical solutions computed by a variety of schemes. The behavior of the systems in the continuum limit and the impact of discreteness and friction are discussed.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Andrey Yu. Kotov ◽  
Daniel Nogradi ◽  
Kalman K. Szabo ◽  
Lorinc Szikszai

Abstract In previous work, [arXiv:1905.01909], we have calculated the mϱ/fπ ratio in the chiral and continuum limit for SU(3) gauge theory coupled to Nf = 2, 3, 4, 5, 6 fermions in the fundamental representation. The main result was that this ratio displays no statistically significant Nf-dependence. In the present work we continue the study of the Nf-dependence by extending the simulations to Nf = 7, 8, 9, 10. Along the way we also study in detail the Nf-dependence of finite volume effects on low energy observables and a particular translational symmetry breaking unphysical, lattice artefact phase specific to staggered fermions.


2021 ◽  
Vol 11 (11) ◽  
pp. 4833
Author(s):  
Afroja Akter ◽  
Md. Jahedul Islam ◽  
Javid Atai

We study the stability characteristics of zero-velocity gap solitons in dual-core Bragg gratings with cubic-quintic nonlinearity and dispersive reflectivity. The model supports two disjointed families of gap solitons (Type 1 and Type 2). Additionally, asymmetric and symmetric solitons exist in both Type 1 and Type 2 families. A comprehensive numerical stability analysis is performed to analyze the stability of solitons. It is found that dispersive reflectivity improves the stability of both types of solitons. Nontrivial stability boundaries have been identified within the bandgap for each family of solitons. The effects and interplay of dispersive reflectivity and the coupling coefficient on the stability regions are also analyzed.


2017 ◽  
Vol 8 (1) ◽  
pp. 23-42 ◽  
Author(s):  
M. Bisi ◽  
G. Spiga

Abstract Starting from a kinetic BGK-model for a rarefied polyatomic gas, based on a molecular structure of discrete internal energy levels, an asymptotic Chapman-Enskog procedure is developed in the asymptotic continuum limit in order to derive consistent fluid-dynamic equations for macroscopic fields at Navier-Stokes level. In this way, the model allows to treat the gas as a mixture of mono-atomic species. Explicit expressions are given not only for dynamical pressure, but also for shear stress, diffusion velocities, and heat flux. The analysis is shown to deal properly also with a mixture of reactive gases, endowed for simplicity with translational degrees of freedom only, in which frame analogous results can be achieved.


Sign in / Sign up

Export Citation Format

Share Document