scholarly journals Correlated single- and few-electron backgrounds milliseconds after interactions in dual-phase liquid xenon time projection chambers

2021 ◽  
Vol 16 (07) ◽  
pp. P07014
Author(s):  
A. Kopec ◽  
A.L. Baxter ◽  
M. Clark ◽  
R.F. Lang ◽  
S. Li ◽  
...  
2018 ◽  
Vol 13 (11) ◽  
pp. P11003-P11003 ◽  
Author(s):  
B. Aimard ◽  
Ch. Alt ◽  
J. Asaadi ◽  
M. Auger ◽  
V. Aushev ◽  
...  

Instruments ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 9 ◽  
Author(s):  
Jonathan Asaadi ◽  
Martin Auger ◽  
Antonio Ereditato ◽  
Damian Goeldi ◽  
Umut Kose ◽  
...  

Traditional charge readout technologies of single-phase Liquid Argon Time projection Chambers (LArTPCs) based on projective wire readout introduce intrinsic ambiguities in event reconstruction. Combined with the slow response inherent in LArTPC detectors, reconstruction ambiguities have limited their performance, until now. Here, we present a proof of principle of a pixelated charge readout that enables the full 3D tracking capabilities of LArTPCs. We characterize the signal-to-noise ratio of charge readout chain to be about 14, and demonstrate track reconstruction on 3D space points produced by the pixel readout. This pixelated charge readout makes LArTPCs a viable option for high-multiplicity environments.


Instruments ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 35
Author(s):  
Adam Lowe ◽  
Krishanu Majumdar ◽  
Konstantinos Mavrokoridis ◽  
Barney Philippou ◽  
Adam Roberts ◽  
...  

The ARIADNE Experiment, utilising a 1-ton dual-phase Liquid Argon Time Projection Chamber (LArTPC), aims to develop and mature optical readout technology for large scale LAr detectors. This paper describes the characterisation, using cosmic muons, of a Timepix3-based camera mounted on the ARIADNE detector. The raw data from the camera are natively 3D and zero suppressed, allowing for straightforward event reconstruction, and a gallery of reconstructed LAr interaction events is presented. Taking advantage of the 1.6 ns time resolution of the readout, the drift velocity of the ionised electrons in LAr was determined to be 1.608 ± 0.005 mm/μs at 0.54 kV/cm. Energy calibration and resolution were determined using through-going muons. The energy resolution was found to be approximately 11% for the presented dataset. A preliminary study of the energy deposition (dEdX) as a function of distance has also been performed for two stopping muon events, and comparison to GEANT4 simulation shows good agreement. The results presented demonstrate the capabilities of this technology, and its application is discussed in the context of the future kiloton-scale dual-phase LAr detectors that will be used in the DUNE programme.


2013 ◽  
Vol 53 (A) ◽  
pp. 555-559
Author(s):  
Rino Persiani

The XENON program consists in operating and developing double-phase time projection chambers using liquid xenon as the target material. It aims to directly detect dark matter in the form of WIMPs via their elastic scattering off xenon nuclei. The current phase is XENON100, located at the Laboratori Nazionali del Gran Sasso (LNGS), with a 62 kg liquid xenon target. We present the 100.9 live days of data, acquired between January and June 2010, with no evidence of dark matter, as well as the new results of the last scientific run, with about 225 live days. The next phase, XENON1T, will increase the sensitivity by two orders of magnitude.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
C. Alt ◽  
B. Radics ◽  
A. Rubbia

Abstract We report on an updated sensitivity for proton decay via p → $$ \overline{\nu} $$ ν ¯ K+ at large, dual phase liquid argon time projection chambers (LAr TPCs). Our work builds on a previous study in which several nucleon decay modes have been simulated and analyzed [1]. At the time several assumptions were needed to be made on the detector and the backgrounds. Since then, the community has made progress in defining these, and the computing power available enables us to fully simulate and reconstruct large samples in order to perform a better estimate of the sensitivity to proton decay. In this work, we examine the benchmark channel p → $$ \overline{\nu} $$ ν ¯ K+, which was previously found to be one of the cleanest channels. Using an improved neutrino event generator and a fully simulated LAr TPC detector response combined with a dedicated neural network for kaon identification, we demonstrate that a lifetime sensitivity of τ /Br (p → $$ \overline{\nu} $$ ν ¯ K+) > 7 × 1034 years at 90% confidence level can be reached at an exposure of 1 megaton · year in quasi-background-free conditions, confirming the superiority of the LAr TPC over other technologies to address the challenging proton decay modes.


2021 ◽  
Vol 16 (08) ◽  
pp. P08063
Author(s):  
B. Aimard ◽  
L. Aizawa ◽  
C. Alt ◽  
J. Asaadi ◽  
M. Auger ◽  
...  

2022 ◽  
Vol 17 (01) ◽  
pp. P01008
Author(s):  
Z. Huang ◽  
A. Abdukerim ◽  
Z. Bo ◽  
W. Chen ◽  
X. Chen ◽  
...  

Abstract The dual-phase xenon time projection chamber (TPC) is one of the most sensitive detector technology for dark matter direct search, where the energy deposition of incoming particle can be converted into photons and electrons through xenon excitation and ionization. The detector response to signal energy deposition varies significantly with the electric field in liquid xenon. We study the detector's light yield and its dependence on the electric field in the PandaX-II dual-phase detector containing 580 kg liquid xenon in the sensitive volume. From our measurements, the light yield at electric fields from 0 V/cm to 317 V/cm is obtained for energy depositions up to 236 keV.


Sign in / Sign up

Export Citation Format

Share Document