Identification of neutron sources and background levels in the polyethylene room of the China Jinping Underground Laboratory

2021 ◽  
Vol 16 (12) ◽  
pp. P12003
Author(s):  
W.X. Zhong ◽  
C.H. Fang ◽  
S.T. Lin ◽  
S.K. Liu ◽  
C.X. Yu ◽  
...  

Abstract The neutron backgrounds induced by supplementary experimental materials can result in contaminations in rare event search experiments. To address this, we present the neutron background levels arising from ambient materials in the polyethylene room of the China Jinping Underground Laboratory; particularly, we compare simulated spectra with measured neutron spectra unfolded using a genetic algorithm. The genetic algorithm optimizes the continuity of the energy spectra and obtains a reasonable spectral result. A good agreement between the unfolded and simulated spectra is achieved. Moreover, estimated neutron background levels of representative ambient materials such as polyethylene, aluminum, and lead are obtained using an exposure time of 511.27 days via a 28 liter 0.5%-gadolinium-doped liquid scintillator detector. The identification of rare neutron sources can aid in background reduction in next-generation large-scale rare event experiments.

Liver Cancer ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 734-743
Author(s):  
Kazuya Kariyama ◽  
Kazuhiro Nouso ◽  
Atsushi Hiraoka ◽  
Akiko Wakuta ◽  
Ayano Oonishi ◽  
...  

<b><i>Introduction:</i></b> The ALBI score is acknowledged as the gold standard for the assessment of liver function in patients with hepatocellular carcinoma (HCC). Unlike the Child-Pugh score, the ALBI score uses only objective parameters, albumin (Alb) and total bilirubin (T.Bil), enabling a better evaluation. However, the complex calculation of the ALBI score limits its applicability. Therefore, we developed a simplified ALBI score, based on data from a large-scale HCC database.We used the data of 5,249 naïve HCC cases registered in eight collaborating hospitals. <b><i>Methods:</i></b> We developed a new score, the EZ (Easy)-ALBI score, based on regression coefficients of Alb and T.Bil for survival risk in a multivariate Cox proportional hazard model. We also developed the EZ-ALBI grade and EZ-ALBI-T grade as alternative options for the ALBI grade and ALBI-T grade and evaluated their stratifying ability. <b><i>Results:</i></b> The equation used to calculate the EZ-ALBI score was simple {[T.Bil (mg/dL)] – [9 × Alb (g/dL)]}; this value highly correlated with the ALBI score (correlation coefficient, 0.981; <i>p</i> &#x3c; 0.0001). The correlation was preserved across different Barcelona clinic liver cancer grade scores (regression coefficient, 0.93–0.98) and across different hospitals (regression coefficient, 0.98–0.99), indicating good generalizability. Although a good agreement was observed between ALBI and EZ-ALBI, discrepancies were observed in patients with poor liver function (T.Bil, ≥3 mg/dL; regression coefficient, 0.877). The stratifying ability of EZ-ALBI grade and EZ-ALBI-T grade were good and their Akaike’s information criterion values (35,897 and 34,812, respectively) were comparable with those of ALBI grade and ALBI-T grade (35,914 and 34,816, respectively). <b><i>Conclusions:</i></b> The EZ-ALBI score, EZ-ALBI grade, and EZ-ALBI-T grade are useful, simple scores, which might replace the conventional ALBI score in the future.


2020 ◽  
pp. 136943322094719
Author(s):  
Xianrong Qin ◽  
Pengming Zhan ◽  
Chuanqiang Yu ◽  
Qing Zhang ◽  
Yuantao Sun

Optimal sensor placement is an important component of a reliability structural health monitoring system for a large-scale complex structure. However, the current research mainly focuses on optimizing sensor placement problem for structures without any initial sensor layout. In some cases, the experienced engineers will first determine the key position of whole structure must place sensors, that is, initial sensor layout. Moreover, current genetic algorithm or partheno-genetic algorithm will change the position of the initial sensor locations in the iterative process, so it is unadaptable for optimal sensor placement problem based on initial sensor layout. In this article, an optimal sensor placement method based on initial sensor layout using improved partheno-genetic algorithm is proposed. First, some improved genetic operations of partheno-genetic algorithm for sensor placement optimization with initial sensor layout are presented, such as segmented swap, reverse and insert operator to avoid the change of initial sensor locations. Then, the objective function for optimal sensor placement problem is presented based on modal assurance criterion, modal energy criterion, and sensor placement cost. At last, the effectiveness and reliability of the proposed method are validated by a numerical example of a quayside container crane. Furthermore, the sensor placement result with the proposed method is better than that with effective independence method without initial sensor layout and the traditional partheno-genetic algorithm.


2010 ◽  
Vol 138 (4) ◽  
pp. 1368-1382 ◽  
Author(s):  
Jeffrey S. Gall ◽  
William M. Frank ◽  
Matthew C. Wheeler

Abstract This two-part series of papers examines the role of equatorial Rossby (ER) waves in tropical cyclone (TC) genesis. To do this, a unique initialization procedure is utilized to insert n = 1 ER waves into a numerical model that is able to faithfully produce TCs. In this first paper, experiments are carried out under the idealized condition of an initially quiescent background environment. Experiments are performed with varying initial wave amplitudes and with and without diabatic effects. This is done to both investigate how the properties of the simulated ER waves compare to the properties of observed ER waves and explore the role of the initial perturbation strength of the ER wave on genesis. In the dry, frictionless ER wave simulation the phase speed is slightly slower than the phase speed predicted from linear theory. Large-scale ascent develops in the region of low-level poleward flow, which is in good agreement with the theoretical structure of an n = 1 ER wave. The structures and phase speeds of the simulated full-physics ER waves are in good agreement with recent observational studies of ER waves that utilize wavenumber–frequency filtering techniques. Convection occurs primarily in the eastern half of the cyclonic gyre, as do the most favorable conditions for TC genesis. This region features sufficient midlevel moisture, anomalously strong low-level cyclonic vorticity, enhanced convection, and minimal vertical shear. Tropical cyclogenesis occurs only in the largest initial-amplitude ER wave simulation. The formation of the initial tropical disturbance that ultimately develops into a tropical cyclone is shown to be sensitive to the nonlinear horizontal momentum advection terms. When the largest initial-amplitude simulation is rerun with the nonlinear horizontal momentum advection terms turned off, tropical cyclogenesis does not occur, but the convectively coupled ER wave retains the properties of the ER wave observed in the smaller initial-amplitude simulations. It is shown that this isolated wave-only genesis process only occurs for strong ER waves in which the nonlinear advection is large. Part II will look at the more realistic case of ER wave–related genesis in which a sufficiently intense ER wave interacts with favorable large-scale flow features.


2011 ◽  
Vol 403-408 ◽  
pp. 3081-3085 ◽  
Author(s):  
Xin Ying Miao ◽  
Jin Kui Chu ◽  
Jing Qiao ◽  
Ling Han Zhang

Measurements of seepage are fundamental for earth dam surveillance. However, it is difficult to establish an effective and practical dam seepage prediction model due to the nonlinearity between seepage and its influencing factors. Genetic Algorithm for Levenberg-Marquardt(GA-LM), a new neural network(NN) model has been developed for predicting the seepage of an earth dam in China using 381 databases of field data (of which 366 in 2008 were used for training and 15 in 2009 for testing). Genetic algorithm(GA) is an ecological system algorithm, which was adopted to optimize the NN structure. Levenberg-Marquardt (LM) algorithm was originally designed to serve as an intermediate optimization algorithm between the Gauss-Newton(GN) method and the gradient descent algorithm, which was used to train NN. The predicted seepage values using GA-LM model are in good agreement with the field data. It is demonstrated here that the model is capable of predicting the seepage of earth dams accurately. The performance of GA-LM has been compared with that of conventional Back-Propagation(BP) algorithm and LM algorithm with trial-and-error approach. The comparison indicates that the GA-LM model can offer stronger and better performance than conventional NNs when used as a quick interpolation and extrapolation tool.


Sign in / Sign up

Export Citation Format

Share Document