scholarly journals In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents

2010 ◽  
Vol 5 (5) ◽  
pp. 055007 ◽  
Author(s):  
Cem Bayram ◽  
Alpay Koray Mizrak ◽  
Selçuk Aktürk ◽  
Hurkan Kurşaklioğlu ◽  
Atila Iyisoy ◽  
...  
2005 ◽  
Vol 498-499 ◽  
pp. 86-92 ◽  
Author(s):  
Isolda Costa ◽  
Sizue Ota Rogero ◽  
Olandir Vercino Correa ◽  
Clarice Terui Kunioshi ◽  
Mitiko Saiki

This study investigates the in vitro corrosion and cytotoxicity response of AISI 316L stainless steel produced by powder injection molding (PIM) technology in a solution that simulates physiological fluids (MEM) by electrochemical techniques and neutral red uptake cytotoxicity assay. The results were compared with those of AISI 316L produced by conventional metallurgy. Both steels showed high corrosion resistance and no toxic effect in the cytotoxicity test. The corrosion products were analyzed by instrumental neutron activation analysis (INAA). The surfaces of the alloys were evaluated before and after corrosion test by scanning electron microscopy and a passive behaviour was indicated supporting the results from other techniques.


2007 ◽  
Vol 342-343 ◽  
pp. 605-608 ◽  
Author(s):  
Yi Bin Ren ◽  
Hua Juan Yang ◽  
Ke Yang ◽  
Bing Chun Zhang

The in vitro blood compatibility of a new nickel free high nitrogen austenitic stainless steel Fe-Cr-Mn-Mo-N (BIOSSN4) was studied by the kinetic clotting time test and the platelet rich plasma adhesion test in this paper. In comparison with 316L stainless steel, the kinetic clotting time of BIOSSN4 steel are longer, and only causes less activation of platelets in platelet adhesion test, which was indicated by their morphology and low spreading. The experimental results reveals that the BIOSSN4 stainless steel has better blood compatibility, the blood compatibility mechanism of steels was analyzed based on surface tension and interfacial tension between the steels and blood.


2017 ◽  
Vol 32 (6) ◽  
pp. 775-787 ◽  
Author(s):  
Albert Jung ◽  
Preeti Makkar ◽  
Jhaleh Amirian ◽  
Byong-Taek Lee

The objective of the present study was to develop a novel hybrid multichannel biphasic calcium phosphate granule (MCG)-based composite system for cartilage regeneration. First, hyaluronic acid-gelatin (HG) hydrogel was coated onto MCG matrix (MCG-HG). Poly(lactic-co-glycolic acid) (PLGA) microspheres was separately prepared and modified with polydopamine subsequent to BMP-7 loading (B). The surface-modified microspheres were finally embedded into MCG-HG scaffold to develop the novel hybrid (MCG-HG-PLGA-PD-B) composite system. The newly developed MCG-HG-PLGA-PD-B composite was then subjected to scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier Transform infrared spectroscopy, porosity, compressive strength, swelling, BMP-7 release and in-vitro biocompatibility studies. Results showed that 60% of BMP-7 retained on the granular surface after 28 days. A hybrid MCG-HG-PLGA-PD-B composite scaffold exhibited higher swelling and compressive strength compared to MCG-HG or MCG. In-vitro studies showed that MCG-HG-PLGA-PD-B had improved cell viability and cell proliferation for both MC3T3-E1 pre-osteoblasts and ATDC5 pre-chondrocytes cell line with respect to MCG-HG or MCG scaffold. Our results suggest that a hybrid MCG-HG-PLGA-PD-B composite scaffold can be a promising candidate for cartilage regeneration applications.


2004 ◽  
Vol 46 (4) ◽  
pp. 795-806 ◽  
Author(s):  
J. Gallardo ◽  
A. Durán ◽  
J.J. de Damborenea

2008 ◽  
Vol 14 (S3) ◽  
pp. 35-36 ◽  
Author(s):  
J. Nunes ◽  
A.P. Piedade ◽  
C.B. Duarte ◽  
M.T. Vieira

When compared with conventional bare metal stents, such as 316L stainless steel, the introduction of drug-eluting stents can promote reduction in the incidence of in-stent restenosis. However, the chemical discrepancy between the metallic stent and the polymeric material that acts as the reservoir for the drug is responsible for some problems during the cardiovascular surgery. Besides the research work aiming at the development of new bulk alloys for stent production, focus as been also directed to the surface modification of these devices. However, the use of functional graded coatings (FGC), i.e., coatings with a gradient of chemical composition between the substrate and the outmost layer, has never been reported in devices for cardiovascular surgery.


2016 ◽  
Vol 86 (5) ◽  
pp. 789-795 ◽  
Author(s):  
Roberto Rongo ◽  
Rosa Valletta ◽  
Rosaria Bucci ◽  
Virginia Rivieccio ◽  
Angela Galeotti ◽  
...  

ABSTRACT Objective:  To investigate the cytotoxicity of nickel-titanium (NiTi) esthetic orthodontic archwires with different surface coatings. Materials and Methods:  Three fully coated, tooth-colored NiTi wires (BioCosmetic, Titanol Cosmetic, EverWhite), two ion-implanted wires (TMA Purple, Sentalloy High Aesthetic), five uncoated NiTi wires (BioStarter, BioTorque, Titanol Superelastic, Memory Wire Superelastic, and Sentalloy), one β-titanium wire (TMA), and one stainless steel wire (Stainless Steel) were considered for this study. The wire samples were placed at 37°C in airtight test tubes containing Dulbecco’s Modified Eagle’s Medium (0.1 mg/mL) for 1, 7, 14, and 30 days. The cell viability of human gingival fibroblasts (HGFs) cultured with this medium was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Data were analyzed by a two-way analysis of variance (α  =  .05). Results:  The highest cytotoxic effect was reached on day 30 for all samples. The archwires exhibited a cytotoxicity on HGFs ranging from “none” to “slight,” with the exception of the BioTorque, which resulted in moderate cytotoxicity on day 30. Significant differences were found between esthetic archwires and their uncoated pairs only for BioCosmetic (P  =  .001) and EverWhite (P < .001). Conclusions:  Under the experimental conditions, all of the NiTi esthetic archwires resulted in slight cytotoxicity, as did the respective uncoated wires. For this reason their clinical use may be considered to have similar risks to the uncoated archwires.


Sign in / Sign up

Export Citation Format

Share Document