scholarly journals Reduce growth rate of light-duty vehicle travel to meet 2050 global climate goals

2011 ◽  
Vol 6 (2) ◽  
pp. 024018 ◽  
Author(s):  
Jalel Sager ◽  
Joshua S Apte ◽  
Derek M Lemoine ◽  
Daniel M Kammen
Author(s):  
Carey W. King ◽  
Michael E. Webber ◽  
Ian J. Duncan

Worldwide demand for petroleum grows steadily every year due to increasing demand in the United States as well as countries with fast-growing economies such as China and India, where the populations are striving to attain higher standards of living and lifestyle. Concern over this increased demand for petroleum in light of worries about reliable supply and global climate change has resulted in the US government passing new Corporate Average Fuel Economy (CAFE) standards and a Renewable Fuels Standard (RFS). The existing mandate in the US to blend ethanol into gasoline (approximately 15 billion gallons annually by 2015) had effectively committed 860 billion gallons of irrigation water in 2005 (approximately 2.4% of U.S. 2005 freshwater consumption) for producing fuel for the light duty vehicle (LDV) transportation sector. It is estimated that by 2030, nearly 2,700 billion gallons of water per year will be consumed and 4,700–6,400 billion gallons withdrawn to produce fuels used in LDVs. Irrigation for biofuels dominates the projected water usage for fuels production, but other alternatives to petroleum gasoline (coal to liquids, oil shale, and electricity via plug-in hybrid vehicles) will also contribute appreciably to future water consumption and withdrawal, especially on a regional level.


2016 ◽  
Vol 255 (1-2) ◽  
pp. 391-420 ◽  
Author(s):  
Boxiao Chen ◽  
Erica Klampfl ◽  
Margaret Strumolo ◽  
Yan Fu ◽  
Xiuli Chao ◽  
...  

Author(s):  
Saeed Vasebi ◽  
Yeganeh M. Hayeri ◽  
Constantine Samaras ◽  
Chris Hendrickson

Gasoline is the main source of energy used for surface transportation in the United States. Reducing fuel consumption in light-duty vehicles can significantly reduce the transportation sector’s impact on the environment. Implementation of emerging automated technologies in vehicles could result in fuel savings. This study examines the effect of automated vehicle systems on fuel consumption using stochastic modeling. Automated vehicle systems examined in this study include warning systems such as blind spot warning, control systems such as lane keeping assistance, and information systems such as dynamic route guidance. We have estimated fuel savings associated with reduction of accident and non-accident-related congestion, aerodynamic force reduction, operation load, and traffic rebound. Results of this study show that automated technologies could reduce light-duty vehicle fuel consumption in the U.S. by 6% to 23%. This reduction could save $60 to $266 annually for the owners of vehicles equipped with automated technologies. Also, adoption of automated vehicles could benefit all road users (i.e., conventional vehicle drivers) up to $35 per vehicle annually (up to $6.2 billion per year).


2018 ◽  
Vol 68 (6) ◽  
pp. 564-575 ◽  
Author(s):  
Qing Li ◽  
Fengxiang Qiao ◽  
Lei Yu ◽  
Shuyan Chen ◽  
Tiezhu Li

2018 ◽  
Author(s):  
Hamza Shafique ◽  
Brad Richard ◽  
Martha Christenson ◽  
Sandra Bayne

2015 ◽  
Vol 2 (1) ◽  
pp. 47 ◽  
Author(s):  
Susan Collet ◽  
Toru Kidokoro ◽  
Yukio Kinugasa ◽  
Prakash Karamchandani ◽  
Allison DenBleyker

Quantifying the proportion of normal- and high-emitting vehicles and their emissions is vital for creating an air quality improvement strategy for emission reduction policies. This paper includes the California LEV III and United States Environmental Protection Agency Tier 3 vehicle regulations in this projection of high emitter quantification for 2018 and 2030. Results show high emitting vehicles account for up to 6% of vehicle population and vehicle miles traveled. Yet, they will contribute to over 75% of exhaust and 66% of evaporative emissions. As these high emitting vehicles are gradually retired from service and are removed from the roads, the overall effect on air quality from vehicle emissions will be reduced.


Author(s):  
Vanderlei Borsari ◽  
João Vicente de Assunção

Sign in / Sign up

Export Citation Format

Share Document