scholarly journals Multi-year data-model evaluation reveals the importance of nutrient availability over climate in arctic ecosystem C dynamics

2020 ◽  
Vol 15 (9) ◽  
pp. 094007
Author(s):  
Efrén López-Blanco ◽  
Marcin Jackowicz-Korczynski ◽  
Mikhail Mastepanov ◽  
Kirstine Skov ◽  
Andreas Westergaard-Nielsen ◽  
...  
2018 ◽  
Vol 7 (2.21) ◽  
pp. 339 ◽  
Author(s):  
K Ulaga Priya ◽  
S Pushpa ◽  
K Kalaivani ◽  
A Sartiha

In Banking Industry loan Processing is a tedious task in identifying the default customers. Manual prediction of default customers might turn into a bad loan in future. Banks possess huge volume of behavioral data from which they are unable to make a judgement about prediction of loan defaulters. Modern techniques like Machine Learning will help to do analytical processing using Supervised Learning and Unsupervised Learning Technique. A data model for predicting default customers using Random forest Technique has been proposed. Data model Evaluation is done on training set and based on the performance parameters final prediction is done on the Test set. This is an evident that Random Forest technique will help the bank to predict the loan Defaulters with utmost accuracy.  


1976 ◽  
Vol 1 (4) ◽  
pp. 370-387 ◽  
Author(s):  
William C. McGee
Keyword(s):  

2019 ◽  
Author(s):  
Laia Comas-Bru ◽  
Sandy P. Harrison ◽  
Martin Werner ◽  
Kira Rehfeld ◽  
Nick Scroxton ◽  
...  

Abstract. Although quantitative isotopic data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to use the speleothem data for data-model comparisons. Here, we accomplish this using 456 globally-distributed speleothem δ18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates procuring large numbers of records if data-model comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotopic values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model’s ability to simulate spatial isotopic trends and the degree to which the model reproduces the observed environmental controls of isotopic spatial variability. Our analyses provide a protocol for using speleothem isotopic data for model evaluation, including screening the observations, the optimum period for the modern observational baseline, and the selection of an appropriate time-window for creating means of the isotope data for palaeo time slices.


2019 ◽  
Vol 15 (4) ◽  
pp. 1557-1579 ◽  
Author(s):  
Laia Comas-Bru ◽  
Sandy P. Harrison ◽  
Martin Werner ◽  
Kira Rehfeld ◽  
Nick Scroxton ◽  
...  

Abstract. Although quantitative isotope data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to using the speleothem data for data–model comparisons. Here, we illustrate this using 456 globally distributed speleothem δ18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates the process of procuring large numbers of records if data–model comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotope values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model's ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem isotope data for model evaluation, including screening the observations to take into account the impact of speleothem mineralogy on δ18O values, the optimum period for the modern observational baseline and the selection of an appropriate time window for creating means of the isotope data for palaeo-time-slices.


1974 ◽  
Vol 56 (2) ◽  
pp. 245 ◽  
Author(s):  
G. G. Judge ◽  
M. E. Bock ◽  
T. A. Yancey
Keyword(s):  

2020 ◽  
Vol 20 (1) ◽  
pp. 65-89
Author(s):  
Robin Elizabeth Desmeules ◽  
Clara Turp ◽  
Andrew Senior

2008 ◽  
Author(s):  
Pedro J. M. Passos ◽  
Duarte Araujo ◽  
Keith Davids ◽  
Ana Diniz ◽  
Luis Gouveia ◽  
...  

2019 ◽  
Vol 13 (1-2) ◽  
pp. 95-115
Author(s):  
Brandon Plewe

Historical place databases can be an invaluable tool for capturing the rich meaning of past places. However, this richness presents obstacles to success: the daunting need to simultaneously represent complex information such as temporal change, uncertainty, relationships, and thorough sourcing has been an obstacle to historical GIS in the past. The Qualified Assertion Model developed in this paper can represent a variety of historical complexities using a single, simple, flexible data model based on a) documenting assertions of the past world rather than claiming to know the exact truth, and b) qualifying the scope, provenance, quality, and syntactics of those assertions. This model was successfully implemented in a production-strength historical gazetteer of religious congregations, demonstrating its effectiveness and some challenges.


Sign in / Sign up

Export Citation Format

Share Document