scholarly journals Weak upstream westerly wind attracts western north pacific typhoon tracks to west

Author(s):  
Jun-Hyeok Son ◽  
Jae-Il Kwon ◽  
Ki-Young Heo

Abstract The steering flow of the large-scale circulation patterns over the Western North Pacific and North East Asia, constrains typhoon tracks. Westerly winds impinging on the Tibetan Plateau, and the resulting flow uplift along the slope of the mountain, induce atmospheric vortex flow and generate stationary barotropic Rossby waves downstream. The downstream Rossby wave zonal phase is determined by the upstream zonal wind speed impinging on the Tibetan Plateau. Positive anomaly of westerly wind forcing tends to induce an eastward shift of the large-scale Rossby wave circulation pattern, forming a cyclonic circulation anomaly over North East Asia. In this study, we show that the Tibetan Plateau dynamically impacts the tracks of western Pacific typhoons via modulation of downstream Rossby waves. Using the topographically forced stationary Rossby wave theory, the dynamical mechanisms for the formation of the North East Asian cyclonic anomaly and its impact on the typhoon tracks are analyzed. The eastward shift of typhoon tracks, caused by the southwesterly wind anomaly located to the southeast of the North East Asian cyclonic circulation anomaly, is robust in June and September, but it is not statistically significant in July–August. The physical understanding of the large-scale circulation pattern affecting typhoon trajectories has large implications not only at the seasonal prediction of the high impact weather phenomena, but also at the right understanding of the long-term climate change.

Author(s):  
Rui Zhang ◽  
Xiaohao Wei ◽  
Vadim A. Kravchinsky ◽  
Leping Yue ◽  
Yan Zheng ◽  
...  

2005 ◽  
Vol 18 (12) ◽  
pp. 2067-2079 ◽  
Author(s):  
Jeffrey Shaman ◽  
Eli Tziperman

Abstract An atmospheric stationary wave teleconnection mechanism is proposed to explain how ENSO may affect the Tibetan Plateau snow depth and thereby the south Asian monsoons. Using statistical analysis, the short available record of satellite estimates of snow depth, and ray tracing, it is shown that wintertime ENSO conditions in the central Pacific may produce stationary barotropic Rossby waves in the troposphere with a northeastward group velocity. These waves reflect off the North American jet, turning equatorward, and enter the North African–Asian jet over the eastern Atlantic Ocean. Once there, the waves move with the jet across North Africa, South Asia, the Himalayas, and China. Anomalous increases in upper-tropospheric potential vorticity and increased wintertime snowfall over the Tibetan Plateau are speculated to be associated with these Rossby waves. The increased snowfall produces a larger Tibetan Plateau snowpack, which persists through the spring and summer, and weakens the intensity of the south Asian summer monsoons.


2021 ◽  
Author(s):  
Jingyi Li ◽  
Fei Li ◽  
Shengping He ◽  
Huijun Wang ◽  
Yvan J Orsolini

<p>The Tibetan Plateau (TP), referred to as the “Asian water tower”, contains one of the largest land ice masses on Earth. The local glacier shrinkage and frozen-water storage are strongly affected by variations in surface air temperature over the TP (TPSAT), especially in springtime. This study reveals a distinct out-of-phase connection between the February North Atlantic Oscillation (NAO) and March TPSAT, which is non-stationary and regulated by the warm phase of the Atlantic Multidecadal Variability (AMV+). The results show that during the AMV+, the negative phase of the NAO persists from February to March, and is accompanied by a quasi-stationary Rossby wave train trapped along a northward-shifted subtropical westerly jet stream across Eurasia, inducing an anomalous adiabatic descent that warms the TP. However, during the cold phase of the AMV, the negative NAO does not persist into March. The Rossby wave train propagates along the well-separated polar and subtropical westerly jets, and the NAO−TPSAT connection is broken. Further investigation suggests that the enhanced synoptic eddy and low-frequency flow (SELF) interaction over the North Atlantic in February and March during the AMV+, caused by the enhanced and southward-shifted storm track, help maintain the NAO anomaly pattern via positive eddy feedback. This study provides a new detailed perspective on the decadal variability of the North Atlantic−TP connections in late winter−early spring.</p>


2009 ◽  
Vol 137 (7) ◽  
pp. 2286-2304 ◽  
Author(s):  
Hatsuki Fujinami ◽  
Tetsuzo Yasunari

Convective variability at submonthly time scales (7–25 days) over the Yangtze and Huaihe River basins (YHRBs) and associated large-scale atmospheric circulation during the mei-yu season were examined using interpolated outgoing longwave radiation (OLR) and NCEP–NCAR reanalysis data for 12 yr having active submonthly convective fluctuation over the YHRBs within the period 1979–2004. Correlations between convection anomalies over the YHRBs and upper-level streamfunction anomalies at every grid point show two contrasting patterns. One pattern exhibits high correlations along the northern to eastern peripheries of the Tibetan Plateau (defined as the NET pattern), whereas the other has high correlations across the Tibetan Plateau (defined as the AT pattern). Composite analysis of the NET pattern shows slow southward migration of convection anomalies from the northeastern periphery of the Tibetan Plateau to southern China, in relation to southward migration of the mei-yu front caused by simultaneous amplification of upper- and low-level waves north of the YHRBs. In the AT pattern, convection anomalies migrate eastward from the western Tibetan Plateau to the YHRBs. A low-level vortex is created at the lee of the plateau by eastward-moving upper-level wave packets and associated convection from the plateau. Rossby wave trains along the Asian jet characterize the upper-level circulation anomalies in the two patterns. The basic state of the Asian jet during the mei-yu season differs between the two patterns, especially around the Tibetan Plateau. The Asian jet has a northward arclike structure in NET years, while a zonal jet dominates in AT years. These differences could alter the Rossby wave train propagation route. Furthermore, the larger zonal wavenumber of AT waves (∼7–8) than of NET waves (∼6) means faster zonal phase speed relative to the ground in the AT pattern than in the NET pattern. These differences likely explain the meridional amplification of waves north of the YHRBs in the NET pattern and the eastward wave movement across the plateau in the AT pattern.


2021 ◽  
Author(s):  
Xuelong Chen

<p>The spatial-temporal structure of the Planetary Boundary Layer (PBL) over mountainous areas can be strongly modified by topography. The PBL over the mountainous terrain of the Tibetan Plateau (TP) is more complex than that observed over its flat areas. To date, there have been no detailed analyses which have taken into account the topography effects exerted on PBL growth over the Tibetan Plateau (TP). A clear understanding of the processes involved in the PBL growth and depth over the TP’s mountainous areas is therefore long overdue.The PBL in the Himalayan region of the Tibetan Plateau (TP) is important to the study of interaction between the area’s topography and synoptic circulation.</p><p>This study used radiosonde, <em>in-situ</em> measurements, ERA5 reanalysis dataset and numerical model to investigate the vertical structure of the PBL and the land surface energy balance in the Rongbuk Valley on the north of the central Himalaya, and their association with the Westerlies, which control the climate of the Himalaya in winters. Two sunny November days in 2014 with different synoptic conditions in terms of large-scale wind direction and speed were selected to investigate the ways in which large-scale synoptic forcing affected the vertical structure of the PBL, atmospheric stability, surface wind field, and land surface energy fluxes. The results revealed that the valley winds and PBL growth were strongly influenced by the variations of the westerlies. When the synoptic wind direction at the height of the mountain ridges was parallel to the axis of the valley, the downward transmission of the westerlies to the valley floor (DTWTV) was strong and cause high near-surface wind speeds and sensible heat flux value, then produced an extremely deep PBL (9 km above sea level) in the early afternoon of November 23. When the synoptic wind direction at the ridge height intersected the axis of the valley and was weak, the DTWTV was weak, and the PBL became relatively low on November 28. These results demonstrate that the interaction between the topography and synoptic circulation plays a critical role in PBL growth.</p>


2021 ◽  
pp. 1-40
Author(s):  
Jingyi Li ◽  
Fei Li ◽  
Shengping He ◽  
Huijun Wang ◽  
Yvan J Orsolini

AbstractThe Tibetan Plateau (TP), referred to as the “Asian water tower”, contains one of the largest land ice masses on Earth. The local glacier shrinkage and frozen-water storage are strongly affected by variations in surface air temperature over the TP (TPSAT), especially in springtime. This study reveals that the relationship between the February North Atlantic Oscillation (NAO) and March TPSAT is unstable with time and regulated by the phase of the Atlantic Multidecadal Variability (AMV). The significant out-of-phase connection occurs only during the warm phase of AMV (AMV+). The results show that during the AMV+, the negative phase of the NAO persists from February to March, and is accompanied by a quasi-stationary Rossby wave train trapped along a northward-shifted subtropical westerly jet stream across Eurasia, inducing an anomalous adiabatic descent that warms the TP. However, during the cold phase of the AMV, the negative NAO can not persist into March. The Rossby wave train propagates along the well-separated polar and subtropical westerly jets, and the NAO−TPSAT connection is broken. Further investigation suggests that the enhanced synoptic eddy and low frequency flow (SELF) interaction over the North Atlantic in February and March during the AMV+, caused by the enhanced and southward-shifted storm track, help maintain the NAO anomaly pattern via positive eddy feedback. This study provides a new detailed perspective on the decadal variability of the North Atlantic−TP connection in late winter−early spring.


2021 ◽  
Vol 18 (2) ◽  
pp. 367-376
Author(s):  
Cheng-long Zhou ◽  
Fan Yang ◽  
Wen Huo ◽  
Ali Mamtimin ◽  
Xing-hua Yang

2013 ◽  
Vol 26 (21) ◽  
pp. 8378-8391 ◽  
Author(s):  
Yi Zhang ◽  
Rucong Yu ◽  
Jian Li ◽  
Weihua Yuan ◽  
Minghua Zhang

Abstract Given the large discrepancies that exist in climate models for shortwave cloud forcing over eastern China (EC), the dynamic (vertical motion and horizontal circulation) and thermodynamic (stability) relations of stratus clouds and the associated cloud radiative forcing in the cold season are examined. Unlike the stratus clouds over the southeastern Pacific Ocean (as a representative of marine boundary stratus), where thermodynamic forcing plays a primary role, the stratus clouds over EC are affected by both dynamic and thermodynamic factors. The Tibetan Plateau (TP)-forced low-level large-scale lifting and high stability over EC favor the accumulation of abundant saturated moist air, which contributes to the formation of stratus clouds. The TP slows down the westerly overflow through a frictional effect, resulting in midlevel divergence, and forces the low-level surrounding flows, resulting in convergence. Both midlevel divergence and low-level convergence sustain a rising motion and vertical water vapor transport over EC. The surface cold air is advected from the Siberian high by the surrounding northerly flow, causing low-level cooling. The cooling effect is enhanced by the blocking of the YunGui Plateau. The southwesterly wind carrying warm, moist air from the east Bay of Bengal is uplifted by the HengDuan Mountains via topographical forcing; the midtropospheric westerly flow further advects the warm air downstream of the TP, moistening and warming the middle troposphere on the lee side of the TP. The low-level cooling and midlevel warming together increase the stability. The favorable dynamic and thermodynamic large-scale environment allows for the formation of stratus clouds over EC during the cold season.


Sign in / Sign up

Export Citation Format

Share Document