scholarly journals Interactive influence of ENSO and IOD on contiguous heatwaves in Australia

Author(s):  
Papari Jyoteeshkumar Reddy ◽  
Sarah E Perkins-Kirkpatrick ◽  
Jason J. Sharples

Abstract Australian heatwaves have a significant impact on society. Most previous studies focus on understanding them in terms of frequency, duration, intensity, and timing. However, understanding the spatial characteristics of heatwaves, particularly those occurring in contiguous regions at the same time (here referred to as contiguous heatwaves), is still largely unexplored. Here, we analyse changes in spatial characteristics of contiguous heatwaves in Australia during 1958-2020 using observational data. Our results show that extremely large contiguous heatwaves are covering significantly larger areas and getting significantly longer during the recent period (1989/90-2019/20) compared to the historical period (1958/59-1988/89). We also investigated the association of contiguous heatwaves in Australia with interactions of the El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) using a large multi-member ensemble of a physical climate model. We found that areal magnitude, total area, median duration, and maximum area of large and extremely large contiguous heatwaves in Australia are significantly higher (lower) during the strong El Niño (Es), strong El Niño co-occurring with strong IOD positive (Es-IPs), and with moderate IOD positive (Es-IPm) (co-occurring strong La Niña with the strong IOD negative (Ls-INs)) seasons relative to the neutral seasons (where both ENSO and IOD are in neutral phase). During the Es, Es-IPm, and Es-IPs seasons, the large-scale physical mechanisms are characterised by anticyclonic highs over the southeast and cyclonic lows over the northwest of Australia, favouring the occurrence and intensification of heatwaves in Australia. These results provide insights into the driving mechanisms of contiguous heatwaves in Australia.

2021 ◽  
pp. 1-54
Author(s):  
Jake W. Casselman ◽  
Andréa S. Taschetto ◽  
Daniela I.V. Domeisen

AbstractEl Niño-Southern Oscillation can influence the Tropical North Atlantic (TNA), leading to anomalous sea surface temperatures (SST) at a lag of several months. Several mechanisms have been proposed to explain this teleconnection. These mechanisms include both tropical and extratropical pathways, contributing to anomalous trade winds and static stability over the TNA region. The TNA SST response to ENSO has been suggested to be nonlinear. Yet the overall linearity of the ENSO-TNA teleconnection via the two pathways remains unclear. Here we use reanalysis data to confirm that the SST anomaly (SSTA) in the TNA is nonlinear with respect to the strength of the SST forcing in the tropical Pacific, as further increases in El Niño magnitudes cease to create further increases of the TNA SSTA. We further show that the tropical pathway is more linear than the extratropical pathway by sub-dividing the inter-basin connection into extratropical and tropical pathways. This is confirmed by a climate model participating in the CMIP5. The extratropical pathway is modulated by the North Atlantic Oscillation (NAO) and the location of the SSTA in the Pacific, but this modulation insufficiently explains the nonlinearity in TNA SSTA. As neither extratropical nor tropical pathways can explain the nonlinearity, this suggests that external factors are at play. Further analysis shows that the TNA SSTA is highly influenced by the preconditioning of the tropical Atlantic SST. This preconditioning is found to be associated with the NAO through SST-tripole patterns.


2019 ◽  
Vol 19 (21) ◽  
pp. 13535-13546
Author(s):  
Nils Madenach ◽  
Cintia Carbajal Henken ◽  
René Preusker ◽  
Odran Sourdeval ◽  
Jürgen Fischer

Abstract. A total of 14 years (September 2002 to September 2016) of Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) monthly mean cloud data are used to quantify possible changes in the cloud vertical distribution over the tropical Atlantic. For the analysis multiple linear regression techniques are used. For the investigated time period significant linear changes were found in the domain-averaged cloud-top height (CTH) (−178 m per decade), the high-cloud fraction (HCF) (−0.0006 per decade), and the low-cloud amount (0.001 per decade). The interannual variability of the time series (especially CTH and HCF) is highly influenced by the El Niño–Southern Oscillation (ENSO). Separating the time series into two phases, we quantified the linear change associated with the transition from more La Niña-like conditions to a phase with El Niño conditions (Phase 2) and vice versa (Phase 1). The transition from negative to positive ENSO conditions was related to a decrease in total cloud fraction (TCF) (−0.018 per decade; not significant) due to a reduction in the high-cloud amount (−0.024 per decade; significant). Observed anomalies in the mean CTH were found to be mainly caused by changes in HCF rather than by anomalies in the height of cloud tops themselves. Using the large-scale vertical motion ω at 500 hPa (from ERA-Interim ECMWF reanalysis data), the observed anomalies were linked to ENSO-induced changes in the atmospheric large-scale dynamics. The most significant and largest changes were found in regions with strong large-scale upward movements near the Equator. Despite the fact that with passive imagers such as MODIS it is not possible to vertically resolve clouds, this study shows the great potential for large-scale analysis of possible changes in the cloud vertical distribution due to the changing climate by using vertically resolved cloud cover and linking those changes to large-scale dynamics using other observations or model data.


2009 ◽  
Vol 22 (14) ◽  
pp. 3877-3893 ◽  
Author(s):  
Savin S. Chand ◽  
Kevin J. E. Walsh

Abstract This study examines the variations in tropical cyclone (TC) genesis positions and their subsequent tracks for different phases of the El Niño–Southern Oscillation (ENSO) phenomenon in the Fiji, Samoa, and Tonga region (FST region) using Joint Typhoon Warning Center best-track data. Over the 36-yr period from 1970/71 to 2005/06, 122 cyclones are observed in the FST region. A large spread in the genesis positions is noted. During El Niño years, genesis is enhanced east of the date line, extending from north of Fiji to over Samoa, with the highest density centered around 10°S, 180°. During neutral years, maximum genesis occurs immediately north of Fiji with enhanced genesis south of Samoa. In La Niña years, there are fewer cyclones forming in the region than during El Niño and neutral years. During La Niña years, the genesis positions are displaced poleward of 12°S, with maximum density centered around 15°S, 170°E and south of Fiji. The cyclone tracks over the FST region are also investigated using cluster analysis. Tracks during the period 1970/71–2005/06 are conveniently described using three separate clusters, with distinct characteristics associated with different ENSO phases. Finally, the role of large-scale environmental factors affecting interannual variability of TC genesis positions and their subsequent tracks in the FST region are investigated. Favorable genesis positions are observed where large-scale environments have the following seasonal average thresholds: (i) 850-hPa cyclonic relative vorticity between −16 and −4 (×10−6 s−1), (ii) 200-hPa divergence between 2 and 8 (×10−6 s−1), and (iii) environmental vertical wind shear between 0 and 8 m s−1. The subsequent TC tracks are observed to be steered by mean 700–500-hPa winds.


2018 ◽  
Vol 31 (5) ◽  
pp. 1771-1787 ◽  
Author(s):  
Jau-Ming Chen ◽  
Pei-Hua Tan ◽  
Liang Wu ◽  
Hui-Shan Chen ◽  
Jin-Shuen Liu ◽  
...  

This study examines the interannual variability of summer tropical cyclone (TC) rainfall (TCR) in the western North Pacific (WNP) depicted by the Climate Forecast System Reanalysis (CFSR). This interannual variability exhibits a maximum region near Taiwan (19°–28°N, 120°–128°E). Significantly increased TCR in this region is modulated by El Niño–Southern Oscillation (ENSO)-related large-scale processes. They feature elongated sea surface temperature warming in the tropical eastern Pacific and a southeastward-intensified monsoon trough. Increased TC movements are facilitated by interannual southerly/southeasterly flows in the northeastern periphery of the intensified monsoon trough to move from the tropical WNP toward the region near Taiwan, resulting in increased TCR. The coherent dynamic relations between interannual variability of summer TCR and large-scale environmental processes justify CFSR as being able to reasonably depict interannual characteristics of summer TCR in the WNP. For intraseasonal oscillation (ISO) modulations, TCs tend to cluster around the center of a 10–24-day cyclonic anomaly and follow its northwestward propagation from the tropical WNP toward the region near Taiwan. The above TC movements are subject to favorable background conditions provided by a northwest–southeasterly extending 30–60-day cyclonic anomaly. Summer TCR tends to increase (decrease) during El Niño (La Niña) years and strong (weak) ISO years. By comparing composite TCR anomalies and correlations with TCR variability, it is found that ENSO is more influential than ISO in modulating the interannual variability of summer TCR in the WNP.


2019 ◽  
Vol 11 (19) ◽  
pp. 2224 ◽  
Author(s):  
Kamal A. Alawad ◽  
Abdullah M. Al-Subhi ◽  
Mohammed A. Alsaafani ◽  
Turki M. Alraddadi ◽  
Monica Ionita ◽  
...  

Falling between seasonal cycle variability and the impact of local drivers, the sea level in the Red Sea and Gulf of Aden has been given less consideration, especially with large-scale modes. With multiple decades of satellite altimetry observations combined with good spatial resolution, the time has come for diagnosis of the impact of large-scale modes on the sea level in those important semi-enclosed basins. While the annual cycle of sea level appeared as a dominant cycle using spectral analysis, the semi-annual one was also found, although much weaker. The first empirical orthogonal function mode explained, on average, about 65% of the total variance throughout the seasons, while their principal components clearly captured the strong La Niña event (1999–2001) in all seasons. The sea level showed a strong positive relation with positive phase El Niño Southern Oscillation in all seasons and a strong negative relation with East Atlantic/West Russia during winter and spring over the study period (1993–2017). We show that the unusually stronger easterly winds that are displaced north of the equator generate an upwelling area near the Sumatra coast and they drive both warm surface and deep-water masses toward the West Indian Ocean and Arabian Sea, rising sea level over the Red Sea and Gulf of Aden. This process could explain the increase of sea level in the basin during the positive phase of El Niño Southern Oscillation events.


2007 ◽  
Vol 20 (14) ◽  
pp. 3654-3676 ◽  
Author(s):  
Suzana J. Camargo ◽  
Andrew W. Robertson ◽  
Scott J. Gaffney ◽  
Padhraic Smyth ◽  
Michael Ghil

Abstract A new probabilistic clustering method, based on a regression mixture model, is used to describe tropical cyclone (TC) propagation in the western North Pacific (WNP). Seven clusters were obtained and described in Part I of this two-part study. In Part II, the present paper, the large-scale patterns of atmospheric circulation and sea surface temperature associated with each of the clusters are investigated, as well as associations with the phase of the El Niño–Southern Oscillation (ENSO). Composite wind field maps over the WNP provide a physically consistent picture of each TC type, and of its seasonality. Anomalous vorticity and outgoing longwave radiation indicate changes in the monsoon trough associated with different types of TC genesis and trajectory. The steering winds at 500 hPa are more zonal in the straight-moving clusters, with larger meridional components in the recurving ones. Higher values of vertical wind shear in the midlatitudes also accompany the straight-moving tracks, compared to the recurving ones. The influence of ENSO on TC activity over the WNP is clearly discerned in specific clusters. Two of the seven clusters are typical of El Niño events; their genesis locations are shifted southeastward and they are more intense. The largest cluster is recurving, located northwestward, and occurs more often during La Niña events. Two types of recurving and one of straight-moving tracks occur preferentially when the Madden–Julian oscillation is active over the WNP region.


2012 ◽  
Vol 25 (18) ◽  
pp. 6108-6122 ◽  
Author(s):  
Andrew J. Dowdy ◽  
Lixin Qi ◽  
David Jones ◽  
Hamish Ramsay ◽  
Robert Fawcett ◽  
...  

Abstract Climatological features of tropical cyclones in the South Pacific Ocean have been analyzed based on a new archive for the Southern Hemisphere. A vortex tracking and statistics package is used to examine features such as climatological maps of system intensity and the change in intensity with time, average tropical cyclone system movement, and system density. An examination is presented of the spatial variability of these features, as well as changes in relation to phase changes of the El Niño–Southern Oscillation phenomenon. A critical line is defined in this study based on maps of cyclone intensity to describe the statistical geographic boundary for cyclone intensification. During El Niño events, the critical line shifts equatorward, while during La Niña events the critical line is generally displaced poleward. Regional variability in tropical cyclone activity associated with El Niño–Southern Oscillation phases is examined in relation to the variability of large-scale atmospheric or oceanic variables associated with tropical cyclone activity. Maps of the difference fields between different phases of El Niño–Southern Oscillation are examined for sea surface temperature, vertical wind shear, lower-tropospheric vorticity, and midtropospheric relative humidity. Results are also examined in relation to the South Pacific convergence zone. The common region where each of the large-scale variables showed favorable conditions for cyclogenesis coincided with the location of maximum observed cyclogenesis for El Niño events as well as for La Niña years.


Sign in / Sign up

Export Citation Format

Share Document