scholarly journals A characterization of positive linear maps and criteria of entanglement for quantum states

2010 ◽  
Vol 43 (38) ◽  
pp. 385201 ◽  
Author(s):  
Jinchuan Hou
2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Long Jian ◽  
Kan He ◽  
Qing Yuan ◽  
Fei Wang

We give a characterization of trace-preserving and positive linear maps preserving trace distance partially, that is, preservers of trace distance of quantum states or pure states rather than all matrices. Applying such results, we give a characterization of quantum channels leaving Helstrom's measure of distinguishability of quantum states or pure states invariant and show that such quantum channels are fully reversible, which are unitary transformations.


2018 ◽  
Vol 10 (6) ◽  
pp. 30
Author(s):  
Ching-Yun Suen

In this paper we provide a characterization of strictly positive matrices of operators and a factorization of their inverses. Consequently, we provide a test of strict positivity of matrices in . We give equivalent conditions for the inequality . We prove a theorem involving inflated Schur products [4, P. 153] of positive matrices of operators with invertible elements in the main diagonal which extends the results [3, P. 479, Theorem 7.5.3 (b), (c)]. We also discuss strictly completely positive linear maps in the paper.


1972 ◽  
Vol 24 (3) ◽  
pp. 520-529 ◽  
Author(s):  
Man-Duen Choi

The objective of this paper is to give some concrete distinctions between positive linear maps and completely positive linear maps on C*-algebras of operators.Herein, C*-algebras possess an identity and are written in German type . Capital letters A, B, C stand for operators, script letters for vector spaces, small letters x, y, z for vectors. Capital Greek letters Φ, Ψ stand for linear maps on C*-algebras, small Greek letters α, β, γ for complex numbers.We denote by the collection of all n × n complex matrices. () = ⊗ is the C*-algebra of n × n matrices over .


Quantum ◽  
2018 ◽  
Vol 2 ◽  
pp. 51
Author(s):  
Daniel Puzzuoli

Given a linear mapΦ:Mn→Mm, its multiplicity maps are defined as the family of linear mapsΦ⊗idk:Mn⊗Mk→Mm⊗Mk, whereidkdenotes the identity onMk. Let‖⋅‖1denote the trace-norm on matrices, as well as the induced trace-norm on linear maps of matrices, i.e.‖Φ‖1=max{‖Φ(X)‖1:X∈Mn,‖X‖1=1}. A fact of fundamental importance in both operator algebras and quantum information is that‖Φ⊗idk‖1can grow withk. In general, the rate of growth is bounded by‖Φ⊗idk‖1≤k‖Φ‖1, and matrix transposition is the canonical example of a map achieving this bound. We prove that, up to an equivalence, the transpose is the unique map achieving this bound. The equivalence is given in terms of complete trace-norm isometries, and the proof relies on a particular characterization of complete trace-norm isometries regarding preservation of certain multiplication relations.We use this result to characterize the set of single-shot quantum channel discrimination games satisfying a norm relation that, operationally, implies that the game can be won with certainty using entanglement, but is hard to win without entanglement. Specifically, we show that the well-known example of such a game, involving the Werner-Holevo channels, is essentially the unique game satisfying this norm relation. This constitutes a step towards a characterization of single-shot quantum channel discrimination games with maximal gap between optimal performance of entangled and unentangled strategies.


2019 ◽  
Vol 10 (4) ◽  
pp. 313-324
Author(s):  
Mohammad W. Alomari

AbstractIn this work, an operator version of Popoviciu’s inequality for positive operators on Hilbert spaces under positive linear maps for superquadratic functions is proved. Analogously, using the same technique, an operator version of Popoviciu’s inequality for convex functions is obtained. Some other related inequalities are also presented.


Sign in / Sign up

Export Citation Format

Share Document