scholarly journals Characterization of linear maps onMnwhose multiplicity maps have maximal norm, with an application in quantum information

Quantum ◽  
2018 ◽  
Vol 2 ◽  
pp. 51
Author(s):  
Daniel Puzzuoli

Given a linear mapΦ:Mn→Mm, its multiplicity maps are defined as the family of linear mapsΦ⊗idk:Mn⊗Mk→Mm⊗Mk, whereidkdenotes the identity onMk. Let‖⋅‖1denote the trace-norm on matrices, as well as the induced trace-norm on linear maps of matrices, i.e.‖Φ‖1=max{‖Φ(X)‖1:X∈Mn,‖X‖1=1}. A fact of fundamental importance in both operator algebras and quantum information is that‖Φ⊗idk‖1can grow withk. In general, the rate of growth is bounded by‖Φ⊗idk‖1≤k‖Φ‖1, and matrix transposition is the canonical example of a map achieving this bound. We prove that, up to an equivalence, the transpose is the unique map achieving this bound. The equivalence is given in terms of complete trace-norm isometries, and the proof relies on a particular characterization of complete trace-norm isometries regarding preservation of certain multiplication relations.We use this result to characterize the set of single-shot quantum channel discrimination games satisfying a norm relation that, operationally, implies that the game can be won with certainty using entanglement, but is hard to win without entanglement. Specifically, we show that the well-known example of such a game, involving the Werner-Holevo channels, is essentially the unique game satisfying this norm relation. This constitutes a step towards a characterization of single-shot quantum channel discrimination games with maximal gap between optimal performance of entangled and unentangled strategies.

2001 ◽  
Vol 12 (07) ◽  
pp. 751-767
Author(s):  
P. A. HAWORTH

We show that the family of nest algebras with r non-zero nest projections is stable, in the sense that an approximate containment of one such algebra within another is close to an exact containment. We use this result to give a local characterization of limits formed from this family. We then consider quite general regular limit algebras and characterize these algebras using a local condition which reflects the assumed regularity of the system.


2018 ◽  
Vol 11 (02) ◽  
pp. 1850022
Author(s):  
Ali Taghavi ◽  
Roja Hosseinzadeh ◽  
Efat Nasrollahi

Let [Formula: see text] and [Formula: see text] be some standard operator algebras on complex Banach spaces [Formula: see text] and [Formula: see text], respectively, and [Formula: see text] be a polynomial with no repeated roots and [Formula: see text], such that [Formula: see text]. We characterize the forms of surjective linear maps [Formula: see text] which preserve the nonzero products of operators that annihilated by [Formula: see text].


1979 ◽  
Author(s):  
M Ribieto ◽  
J Elion ◽  
D Labie ◽  
F Josso

For the purification of the abnormal prothrombin (Pt Metz), advantage has been taken of the existence in the family of three siblings who, being double heterozygotes for Pt Metz and a hypoprothrombinemia, have no normal Pt. Purification procedures included barium citrate adsorption and chromatography on DEAE Sephadex as for normal Pt. As opposed to some other variants (Pt Barcelona and Madrid), Pt Metz elutes as a single symetrical peak. By SDS polyacrylamide gel electrophoresis, this material is homogeneous and appears to have the same molecular weight as normal Pt. Comigration of normal and abnormal Pt in the absence of SDS, shows a double band suggesting an abnormal charge for the variant. Pt Metz exhibits an identity reaction with the control by double immunodiffusion. Upon activation by factor Xa, Pt Metz can generate amydolytic activity on Bz-Phe-Val-Arg-pNa (S2160), but only a very low clotting activity. Clear abnormalities are observed in the cleavage pattern of Pt Metz when monitored by SDS gel electrophoresis. The main feature are the accumulation of prethrombin l (Pl) and the appearance of abnormal intermediates migrating faster than Pl.


2021 ◽  
pp. 1-4
Author(s):  
Yu-Wei Tseng ◽  
Chi-Chun Huang ◽  
Chih-Chiang Wang ◽  
Chiuan-Yu Li ◽  
Kuo-Hsiang Hung

Abstract Epilobium belongs to the family Onagraceae, which consists of approximately 200 species distributed worldwide, and some species have been used as medicinal plants. Epilobium nankotaizanense is an endemic and endangered herb that grows in the high mountains in Taiwan at an elevation of more than 3300 m. Alpine herbs are severely threatened by climate change, which leads to a reduction in their habitats and population sizes. However, only a few studies have addressed genetic diversity and population genetics. In the present study, we developed a new set of microsatellite markers for E. nankotaizanense using high-throughput genome sequencing data. Twenty polymorphic microsatellite markers were developed and tested on 30 individuals collected from three natural populations. These loci were successfully amplified, and polymorphisms were observed in E. nankotaizanense. The number of alleles per locus (A) ranged from 2.000 to 3.000, and the observed (Ho) and expected (He) heterozygosities ranged from 0.000 to 0.929 and from 0.034 to 0.631, respectively. The developed polymorphic microsatellite markers will be useful in future conservation genetic studies of E. nankotaizanense as well as for developing an effective conservation strategy for this species and facilitating germplasm collections and sustainable utilization of other Epilobium species.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 728
Author(s):  
Milagrosa González Fernández de Castro ◽  
Yolanda Martín Álvarez ◽  
Juan José Moreno-Labella ◽  
Miguel Panizo-Laiz ◽  
Benito del Río

The Ni-hard alloys white-cast irons are generally used for high wear work. Among them, those with better impact resistance because of its low carbon content compared to the rest of the family, are studied in this paper. One experimental technique of characterizing the metallic materials is the microstructural study. Several metallographic attacks intended to reveal qualitatively each microconstituent that forms the alloy, as well as the segregation and solidification structure of casting, are studied in this article. The use of color metallography is fundamental in this case to distinguish clearly the microconstituents. The main objective of this paper is to propose a series of attacks that identify each one of the microconstituents present in the alloy that has not been reported up to date.


2017 ◽  
Vol 35 (13) ◽  
pp. 2541-2547 ◽  
Author(s):  
Zhi Qiao ◽  
Yudong Yao ◽  
Xiaochao Wang ◽  
Wei Fan ◽  
Zunqi Lin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document