Unsteady flow and heat transfer of viscous incompressible fluid with temperature-dependent viscosity due to a rotating disc in a porous medium

2007 ◽  
Vol 40 (14) ◽  
pp. 4055-4055
Author(s):  
H A Attia
2020 ◽  
Vol 89 (1-4) ◽  
pp. 1-6
Author(s):  
R. Pradhan ◽  
K. Swain ◽  
G.C. Dash

The steady boundary layer viscous incompressible fluid flow on a permeable flat plate embedded in a porous medium has been considered in the present study. The momentum transport phenomena are subjected to external magnetic field, permeability of the porous medium and cross flow due to presence of suction and injection. Moreover, the heat transfer phenomena consider the loss of thermal energy due to radiation and mass transfer phenomena accounts for the generative/destructive chemical reaction of the reactive species as well. Most importantly, the temperature dependent viscosity and thermal conductivity of the fluid makes the present study more realistic. The numerical solution presented through graphs brings out the interesting outcomes: The higher rate of suction enhances the fluid temperature. This observation is akin to the fact that the higher suction brings the molecules closure hence the heat transfer increases. The porous medium, embedding the plate, acts as a coolant by reducing the fluid temperature.


2021 ◽  
Vol 408 ◽  
pp. 33-49
Author(s):  
Lazarus Rundora

This article analyses the thermal decomposition in an unsteady MHD mixed convection flow of a reactive, electrically conducting Casson fluid within a vertical channel filled with a saturated porous medium and the influence of the temperature dependent properties on the flow. The fluid is assumed to be incompressible with the viscosity coefficient varying exponentially with temperature. The flow is subjected to an externally applied uniform magnetic field. The exothermic chemical kinetics inherent in the flow system give rise to heat dissipation. A technique based on a semi-discretization finite difference scheme and the shooting method is applied to solve the dimensionless governing equations. The effects of the temperature dependent viscosity, the magnetic field and other important parameters on the velocity and temperature profiles, the wall shear stress and the wall heat transfer rate are presented graphically and discussed quantitatively and qualitatively. The fluid flow model revealed flow characteristics that have profound ramifications including the increased heat transfer enhancement attributes of the reactive temperature dependent viscosity Casson fluid flow.


Sign in / Sign up

Export Citation Format

Share Document