scholarly journals Position-dependent mass Dirac equation and local Fermi velocity

Author(s):  
Rahul Ghosh

Abstract We present a new approach to study the one-dimensional Dirac equation in the background of a position-dependent mass m. Taking the Fermi velocity vf to be a local variable, we explore the resulting structure of the coupled equations and arrive at an interesting constraint of m turning out to be the inverse square of vf. We address several solvable systems that include the free particle, shifted harmonic oscillator, Coulomb and nonpolynomial potentials. In particular, in the supersymmetric quantum mechanics context, the upper partner of the effective potential yields a new form for an inverse quadratic functional choice of the Fermi velocity.

2013 ◽  
Vol 28 (31) ◽  
pp. 1350137 ◽  
Author(s):  
GEUSA DE A. MARQUES ◽  
V. B. BEZERRA ◽  
SHI-HAI DONG

We consider the problem of a relativistic particle with position-dependent mass in the presence of a Coulomb and a scalar potentials in the background spacetime generated by a cosmic string. The scalar potential arises from the self-interaction potential which is induced by the conical geometry of the spacetime under consideration. We find the solution of the corresponding Dirac equation and determine the energy spectrum of the particle. The behavior of the energy levels on the parameters associated with the presence of the cosmic string and with the fact that the mass of the particle depends on its position is also analyzed.


Open Physics ◽  
2014 ◽  
Vol 12 (4) ◽  
Author(s):  
Eser Olğar ◽  
Hayder Dhahir ◽  
Haydar Mutaf

AbstractThe bound state solution of Coulomb Potential in the Dirac equation is calculated for a position dependent mass function M(r) within the framework of the asymptotic iteration method (AIM). The eigenfunctions are derived in terms of hypergeometric function and function generator equations of AIM.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Soner Alpdoğan ◽  
Ali Havare

The one-dimensional Dirac equation with position dependent mass in the generalized asymmetric Woods-Saxon potential is solved in terms of the hypergeometric functions. The transmission and reflection coefficients are obtained by considering the one-dimensional electric current density for the Dirac particle and the equation describing the bound states is found by utilizing the continuity conditions of the obtained wave function. Also, by using the generalized asymmetric Woods-Saxon potential solutions, the scattering states are found out without making calculation for the Woods-Saxon, Hulthen, cusp potentials, and so forth, which are derived from the generalized asymmetric Woods-Saxon potential and the conditions describing transmission resonances and supercriticality are achieved. At the same time, the data obtained in this work are compared with the results achieved in earlier studies and are observed to be consistent.


Sign in / Sign up

Export Citation Format

Share Document