scholarly journals Optimization of Heavy Metal Removal by Sulfate Reducing Bacteria in a High Concentration Zn-fed Fixed Bed Bioreactor Using Plackett Burman Design Experiments

Author(s):  
Qiyuan Gu ◽  
Xinglan Cui ◽  
Xingyu Liu ◽  
He Shang ◽  
Jiankang Wen
2020 ◽  
Vol 81 (9) ◽  
pp. 1797-1827 ◽  
Author(s):  
Ya-Nan Xu ◽  
Yinguang Chen

Abstract Industrial development has led to generation of large volumes of wastewater containing heavy metals, which need to be removed before the wastewater is released into the environment. Chemical and electrochemical methods are traditionally applied to treat this type of wastewater. These conventional methods have several shortcomings, such as secondary pollution and cost. Bioprocesses are gradually gaining popularity because of their high selectivities, low costs, and reduced environmental pollution. Removal of heavy metals by sulfate-reducing bacteria (SRB) is an economical and effective alternative to conventional methods. The limitations of and advances in SRB activity have not been comprehensively reviewed. In this paper, recent advances from laboratory studies in heavy metal removal by SRB were reported. Firstly, the mechanism of heavy metal removal by SRB is introduced. Then, the factors affecting microbial activity and metal removal efficiency are elucidated and discussed in detail. In addition, recent advances in selection of an electron donor, enhancement of SRB activity, and improvement of SRB tolerance to heavy metals are reviewed. Furthermore, key points for future studies of the SRB process are proposed.


2020 ◽  
Vol 14 (3) ◽  
pp. 384-395
Author(s):  
Juan Yin ◽  
Chao-Bing Deng ◽  
Hongxiang Zhu ◽  
Jianhua Xiong ◽  
Zhuo Sun

Sulfate reducing bacteria (SRB) are widely used to remove heavy metals because of their high efficiency. However, the metabolic processes of SRB require additional carbon sources, and the development of low-cost carbon sources has gradually attracted attention. The utilization of sugar byproduct resources, as the low-cost carbon sources, has great practical significance for environmentally sustainable development in Guangxi, China. This study aims to cultivate SRB with low-cost sugar byproducts, apply them to controlling a lead-polluted environment, and study the effects and mechanisms of controlling lead pollution. The research results show that the best culture effect of SBR can be obtained by mixing the filter mud and vinasse in a ratio of 1:1 to 3:1. SRB have average lead removal rates of more than 96.97% in solutions with different lead concentration of 10∼100 mg/L, and SRB have a higher tolerance to high concentrations of lead due to factors such as the organic substance composition of sugar byproducts and the porosity of filter mud. Scanning electron microscopy combined with energy dispersive spectrometry and X-ray diffraction analysis show that SRB mainly cause Pb2+ to form PbS precipitate through redox reactions to remove lead from the solution. Therefore, low-cost filters of a mud and vinasse mixture can be used as a medium for SRB and exhibit high heavy metal removal efficiency, thus providing a new utilization of filter mud and vinasse.


Author(s):  
Alaa El Din M. Ibrahim ◽  
Samia Hamdona ◽  
Mona El-Naggar ◽  
Hala Abou El-Hassayeb ◽  
Omayma Hassan ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1937
Author(s):  
Thuong Thi Nguyen ◽  
Satoshi Soda ◽  
Akihiro Kanayama ◽  
Takaya Hamai

This study demonstrated heavy metal removal from neutral mine drainage of a closed mine in Kyoto prefecture in pilot-scale constructed wetlands (CWs). The CWs filled with loamy soil and limestone were unplanted or planted with cattails. The hydraulic retention time (HRT) in the CWs was shortened gradually from 3.8 days to 1.2 days during 3.5 months of operation. A short HRT of 1.2 days in the CWs was sufficient to achieve the effluent standard for Cd (0.03 mg/L). The unplanted and the cattail-planted CWs reduced the average concentrations of Cd from 0.031 to 0.01 and 0.005 mg/L, Zn from 0.52 to 0.14 and 0.08 mg/L, Cu from 0.07 to 0.04 and 0.03 mg/L, and As from 0.011 to 0.006 and 0.006 mg/L, respectively. Heavy metals were removed mainly by adsorption to the soil in both CWs. The biological concentration factors in cattails were over 2 for Cd, Zn, and Cu. The translocation factors of cattails for all metals were 0.5–0.81. Sulfate-reducing bacteria (SRB) belonging to Deltaproteobacteria were detected only from soil in the planted CW. Although cattails were a minor sink, the plants contributed to metal removal by rhizofiltration and incubation of SRB, possibly producing sulfide precipitates in the rhizosphere.


2010 ◽  
Vol 44 (1) ◽  
pp. 151-158 ◽  
Author(s):  
C. Cruz Viggi ◽  
F. Pagnanelli ◽  
A. Cibati ◽  
D. Uccelletti ◽  
C. Palleschi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document