scholarly journals Facile Sol-Gel Synthesis of Calcium Phosphates: Influence of Ca/P Ratio and Calcination Temperature

Author(s):  
A J Permana ◽  
A T Utami ◽  
U S Handajani ◽  
H Setyawati
2021 ◽  
Author(s):  
Augusto Arce-Sarria ◽  
Fiderman Machuca-Martínez ◽  
Ciro Bustillo-Lecompte ◽  
Aracely Hernández-Ramírez ◽  
José Colina-Márquez

In this study, a TiO2 catalyst, modified with tungsten oxide (WO3), was synthesized to reduce its bandgap energy (Eg) and to improve its photocatalytic performance. For the catalyst evaluation, the effect of the calcination temperature on the solar photocatalytic degradation was analyzed. The experimental runs were carried out in a CPC (compound parabolic collector) pilot-scale solar reactor, following a multilevel factorial experimental design, which allowed analysis of the effect of the calcination temperature, the initial concentration of amoxicillin, and the catalyst load on the amoxicillin removal. The most favorable calcination temperature for the catalyst performance, concerning the removal of amoxicillin, was 700 °C; because it was the only sample that showed the rutile phase in its crystalline structure. Regarding the loss of the antibiotic activity, the inhibition tests showed that the treated solution of amoxicillin exhibited lower antibacterial activity. The highest amoxicillin removal achieved in these experiments was 64.4% with 100 ppm of amoxicillin concentration, 700 °C of calcination temperature, and 0.1 g L−1 of catalyst load. Nonetheless, the modified TiO2/WO3 underperformed compared to the commercial TiO2 P25, due to its low specific surface and the particles sintering during the sol-gel synthesis


2017 ◽  
Vol 20 (2) ◽  
Author(s):  
Dechang Han ◽  
Zheng Ma ◽  
Ling Du ◽  
Wenjie Zhang

AbstractThe effects of calcination temperature on properties of porous lanthanum titanate using PEG4000 template in a sol-gel route were studied. Photocatalytic degradation of Reactive Brilliant Red X3B on the materials was evaluated. Monoclinic La


2011 ◽  
Vol 25 (21) ◽  
pp. 2823-2839 ◽  
Author(s):  
Y. VAHIDSHAD ◽  
H. ABDIZADEH ◽  
H. R. BAHARVANDI ◽  
M. AKBARI BASERI

A sol-gel method is investigated to synthesize CuO – ZrO 2 nanoparticles as catalyst for hydrogen production from methanol. Finer precursor nanoparticles give rise to larger specific areas in catalyst which result in a high hydrogen production. The effects of some critical process parameters on the sol-gel synthesis of CuO – ZrO 2 nanoparticles are studied. These parameters are affected on synthesis of CuO – ZrO 2 when it is prepared with sol-gel method. Particle size and distribution are considered as the results. The parameters including the effect of calcination temperature, aging temperature, nature and concentration of catalyst (acidic or basic conditions), H 2 O /precursor molar ratio, and chelating agent that have been identified as most important, are focused. It is found that the calcination temperature strongly influenced the morphology and interaction between the active species and support, and hence the structure and catalytic performance. Nature and concentration of catalyst ( pH value), chelating agent, ( H 2 O /precursor) molar ratio and also aging temperature have influence on the nanoparticles. Thus, by controlling these factors, it is possible to vary the morphology and properties of the sol-gel-derived inorganic network over wide ranges. Morphology, particle size and distribution, phase evaluation, structure, and chemical analysis of the products are investigated by SEM, TEM, DTA/TG, XRD and EDX respectively.


2010 ◽  
Vol 03 (03) ◽  
pp. 217-221 ◽  
Author(s):  
SHIGUANG HU ◽  
TIANJING ZHANG ◽  
HUJUN CAO ◽  
HONGMEI ZHANG ◽  
ZHAOHUI LI ◽  
...  

Glycine was firstly used as a chelating agent to prepare LiFePO4/C cathodes by the sol–gel process and sucrose as carbon source. The effects of calcination temperature on properties of LiFePO4/C cathode were investigated using scanning electron microscope (SEM), X-ray diffraction (XRD), galvanostatic charge-discharge and cyclic voltammogram (CV) respectively. The XRD patterns indicate that all samples were of good crystallinity. The primary particle size increased with the calcination temperature from 600 to 750°C. The LiFePO4/C sample synthesized at 700°C has the best electrochemical performance with an initial discharge capacity of 162.6 mAh g-1 at 0.1 C and the discharge capacity remains at 154.6 mAh g-1 after 50 cycles.


2017 ◽  
Vol 13 (2) ◽  
pp. 133 ◽  
Author(s):  
Arie Hardian ◽  
Alvi Aristia Ramadhiany ◽  
Dani Gustaman Syarif ◽  
Senadi Budiman

<p>The aim of this work was to determine the effect of calcination temperature on the characteristics of Fe<sub>2</sub>O<sub>3</sub> nanoparticles (NPs) in sol-gel synthesis. The obtained Fe<sub>2</sub>O<sub>3 </sub>NPs was then used as material for preparation of Fe<sub>2</sub>O<sub>3</sub>-water nanofluids. Nanofluids is a mixture between basic fluid like water and 1 - 100 nm solid particles (nanoparticles). Nanoparticles of Fe<sub>2</sub>O<sub>3</sub> have been synthesized from the local mineral Jarosite using sol-gel method by using starfruit (<em>Averrhoa bilimbi</em>) extracts as the chelating agent. The calcination temperature was then varied from 500 ºC to 700 ºC for 5 hours. Based on the X-Ray Diffraction (XRD) analysis, the diffraction pattern of obtained Fe<sub>2</sub>O<sub>3</sub> was relevant with the JCPDS data No. 33-0664 for α-Fe<sub>2</sub>O<sub>3 </sub>with hexagonal crystallite system. The crystallite size (Scherrer’s Equation) of obtained α-Fe<sub>2</sub>O<sub>3</sub> nanoparticles at calcination temperatures of 500 ºC, 600 ºC and 700 ºC was 50 nm, 48 nm and 40 nm, respectively. The Surface Area of Fe<sub>2</sub>O<sub>3</sub> NPs at temperature of 500 ºC, 600 ºC and 700 ºC was 45.45 m<sup>2</sup>/g; 26.91 m<sup>2</sup>/g and 17.51 m<sup>2</sup>/g, respectively. Fe<sub>2</sub>O<sub>3</sub>-water nanofluids was relativly stable with zeta potential of -39.60 mV; -46.37 mV and -41.57 mV, respectively for 500 ºC, 600 ºC and 700 ºC calcination temperature. The viscosity of Fe<sub>2</sub>O<sub>3</sub>-water nanofluids was higher than the viscosity of water. The critical heat flux (CHF) value of water-Fe<sub>2</sub>O<sub>3</sub> nanofluids was higher than the CHF water. The highest CHF value for nanofluids was obtained by using α-Fe<sub>2</sub>O<sub>3</sub> nanoparticles with calcination temperature of 600 ºC which 34.99 % of increment compare to the base fluid (water).</p>


2021 ◽  
Author(s):  
Augusto Arce-Sarria ◽  
Fiderman Machuca-Martínez ◽  
Ciro Bustillo-Lecompte ◽  
Aracely Hernández-Ramírez ◽  
José Colina-Márquez

In this study, a TiO2 catalyst, modified with tungsten oxide (WO3), was synthesized to reduce its bandgap energy (Eg) and to improve its photocatalytic performance. For the catalyst evaluation, the effect of the calcination temperature on the solar photocatalytic degradation was analyzed. The experimental runs were carried out in a CPC (compound parabolic collector) pilot-scale solar reactor, following a multilevel factorial experimental design, which allowed analysis of the effect of the calcination temperature, the initial concentration of amoxicillin, and the catalyst load on the amoxicillin removal. The most favorable calcination temperature for the catalyst performance, concerning the removal of amoxicillin, was 700 °C; because it was the only sample that showed the rutile phase in its crystalline structure. Regarding the loss of the antibiotic activity, the inhibition tests showed that the treated solution of amoxicillin exhibited lower antibacterial activity. The highest amoxicillin removal achieved in these experiments was 64.4% with 100 ppm of amoxicillin concentration, 700 °C of calcination temperature, and 0.1 g L−1 of catalyst load. Nonetheless, the modified TiO2/WO3 underperformed compared to the commercial TiO2 P25, due to its low specific surface and the particles sintering during the sol-gel synthesis


2008 ◽  
Vol 391 ◽  
pp. 141-158 ◽  
Author(s):  
Antonio J. Salinas ◽  
Maria Vallet-Regí

Sol–gel synthesis is used for the fabrication of new materials with technological applications including ceramics for implants manufacturing, usually termed bioceramics. Many bioactive and resorbable bioceramics, that is, calcium phosphates, glasses and glass–ceramics, have been improved by using the sol–gel synthesis. In addition, the soft thermal conditions of sol–gel methods made possible to synthesize more reactive materials than those synthesized by traditional methods. Moreover, new families of bioactive materials such as organic–inorganic hybrids and inorganic compounds with ordered mesostructure can be produced. In hybrid materials, the inorganic component ensures the bioactive response whereas the organic polymeric component allows modulating other properties of the resulting biomaterial such as mechanical properties, degradation, etc. On the other hand, the sol–gel processes also allow the synthesis of silica ordered mesoporous materials, which are bioactive and exhibit – as an added value – a possible application as matrices for the controlled release of biologically active molecules (drugs, peptides, hormones, etc.). Finally, by combining the bioactive glasses composition with synthesis strategies of mesoporous materials, template glasses with ordered mesoporosity can be obtained. In this chapter, the advances that sol–gel technology has brought to the silica-based bioactive bioceramics are presented.


2003 ◽  
Vol 780 ◽  
Author(s):  
R. Houbertz ◽  
J. Schulz ◽  
L. Fröhlich ◽  
G. Domann ◽  
M. Popall ◽  
...  

AbstractReal 3-D sub-νm lithography was performed with two-photon polymerization (2PP) using inorganic-organic hybrid polymer (ORMOCER®) resins. The hybrid polymers were synthesized by hydrolysis/polycondensation reactions (modified sol-gel synthesis) which allows one to tailor their material properties towards the respective applications, i.e., dielectrics, optics or passivation. Due to their photosensitive organic functionalities, ORMOCER®s can be patterned by conventional photo-lithography as well as by femtosecond laser pulses at 780 nm. This results in polymerized (solid) structures where the non-polymerized parts can be removed by conventional developers.ORMOCER® structures as small as 200 nm or even below were generated by 2PP of the resins using femtosecond laser pulses. It is demonstrated that ORMOCER®s have the potential to be used in components or devices built up by nm-scale structures such as, e.g., photonic crystals. Aspects of the materials in conjunction to the applied technology are discussed.


2019 ◽  
Vol 11 (3) ◽  
pp. 03021-1-03021-5
Author(s):  
V. S. Bushkova ◽  
◽  
I. P. Yaremiy ◽  
B. K. Ostafiychuk ◽  
N. I. Riznychuk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document