scholarly journals Study on Curing Kinetics of Fatty Amine/Epoxy Resin Using Non-Isothermal DSC Method

Author(s):  
Rui Lin ◽  
Huayu Zhao ◽  
Lian Zuo ◽  
Yiteng Zhang
2019 ◽  
Vol 25 (4) ◽  
pp. 478-484
Author(s):  
Haoqing XU ◽  
Yuan FANG ◽  
Aizhao ZHOU ◽  
Pengming JIANG ◽  
Shi SHU ◽  
...  

Epoxy resin insulation paint was prepared with epoxy resin (E44) as binder and with proper inorganic fillers and curing agent (T31) as additives. The isothermal curing reaction process of paint was studied by the differential scanning calorimetry method (DSC), and the curves of curing reaction rate versus time of paint were obtained. The curing reaction kinetics was investigated by using the phenomenological method, and the corresponding parameters of the n-order model, autocatalytic model and Kamal model were determined by fitting the experimental data, respectively. According to the values of R2 and the sum of square due to error (SSE), a suitable curing reaction kinetic model was determined. The curing reaction mechanism of paint was ascertained by the dynamic temperature DSC method and IR spectroscopy (FTIR) method. The results show that the Kamal model can be used to describe the curing kinetics of epoxy resin paint, and the total reaction orders increase from 1.30 to 2.14. The two rate constants increase with the increase of the curing temperature. The activation energy is 90.5832 kJ/mol and 68.3733 kJ/mol respectively, and the pre-exponential factors are 6.521 × 1015 s-1 and 6.3807 × 109 s-1. The curing reaction of paint consists of two steps: the first step is the addition reaction of epoxy group and primary amine or secondary amine; the second step is the etherification reaction of epoxy group and phenolic hydroxyl or alcoholic hydroxyl. Epoxy resin insulation paint was prepared with epoxy resin (E44) as binders and with proper inorganic fillers and curing agent (T31) as additives. The isothermal curing reaction process of paint was studied by differential scanning calorimetry method (DSC), and the curves of curing reaction rate versus time of paint were obtained. The curing reaction kinetics was studied by using the phenomenological method, the corresponding parameters of the n-order model, autocatalytic model and Kamal model were determined by fitting the experimental data, respectively. According to the values of R2 and the sum of square due to error (SSE), a suitable curing reaction kinetic model was determind. The curing reaction mechanism of paint was ascertained by dynamic temperature DSC method and IR spectrogram (FTIR) method. The results show that the kamal model can be used to describe the curing kinetics of epoxy resin paint, the total reaction orders increase from 1.30 to 2.14. The results also show that the two rate constants increase with increasing curing temperature, The activation energies are 90.5832 kJ/mol and 68.3733 kJ/mol, and the pre-exponential factor are 6.521×1015 s-1 and 6.3807×109 s-1. The curing reaction of paint in two steps, the first step is the addition reaction of epoxy group and primary amine or secondary amine. The second step is the etherification reaction of epoxy group and phenolic hydroxyl or alcoholic hydroxyl.


1988 ◽  
Vol 129 (2) ◽  
pp. 277-284 ◽  
Author(s):  
M.B. Patel ◽  
R.G. Patel ◽  
V.S. Patel

2011 ◽  
Vol 525 (1-2) ◽  
pp. 31-39 ◽  
Author(s):  
Jintao Wan ◽  
Zhi-Yang Bu ◽  
Cun-Jin Xu ◽  
Hong Fan ◽  
Bo-Geng Li

2013 ◽  
Vol 788 ◽  
pp. 223-227 ◽  
Author(s):  
Ming Qiang Chen ◽  
Shao Min Liu ◽  
Feng Li ◽  
Zhong Lian Yang ◽  
Ye Zhang

The synthesis of Lignin Base Epoxy Resin was based on industrial alkali lignin, and lignin-based epoxy resin curing characteristics were analyzed using the thermal weight loss technology under the oxygen atmosphere conditions. In light of the infra-red analysis of raw materials, the curing reaction kinetic parameters of lignin-based epoxy resin system were calculated using the Kissinger-Crane and Flynn-Wall-Ozawa method, and the curing reaction kinetics model of lignin-based epoxy resin system was established. The results showed that the kinetic parameters obtained using two methods were approximate, which validated that the curing reaction was consistent with the principle of the first-order reaction model. Initial curing temperature Ti0=454.88 K, curing temperature Tp0=507.55 K, and terminal temperature Tf0=598.77 K of lignin-based epoxy resin system were obtained when the extrapolation method was applied.


2015 ◽  
Vol 618 ◽  
pp. 18-25 ◽  
Author(s):  
Xiangyun Zheng ◽  
Daoke Li ◽  
Chuanyi Feng ◽  
Xiaoting Chen

Sign in / Sign up

Export Citation Format

Share Document