scholarly journals Conservation agriculture: new crop production technologies

Author(s):  
G E Larina ◽  
L G Seraya ◽  
I O Ivanova ◽  
I N Kalembet ◽  
L M Poddymkina
2016 ◽  
Vol 55 (S1) ◽  
pp. 67-83 ◽  
Author(s):  
RIC COE ◽  
JOYCE NJOLOMA ◽  
FERGUS SINCLAIR

SUMMARYAgricultural development projects frequently promote new crop production technologies for adoption at scale on the basis of research and pilot studies in a limited number of contexts. The performance of these production technologies is often variable and dependent on context. Using an example from the Agroforestry for Food Security Project in Malawi, that promoted agroforestry technologies for soil fertility enhancement, we explore the nature and implications of variation in performance across farmers. Mean effects of these technologies, measured by differences in maize yield between agroforestry and sole maize plots, were modest but positive. However, there was large variation in those differences, some explained by altitude, plot management and fertilizer use but with much unexplained. This represents risk to farmers. Those communicating with farmers need to be honest and clear about this risk. It can be reduced by explanation in terms of contextual factors. This should be an aim of research that can often be embedded in scaling up the promotion of agronomic innovations.


2019 ◽  
Vol 55 (2) ◽  
pp. 195-199 ◽  
Author(s):  
J. A. ANDERSSON ◽  
T. J. KRUPNIK ◽  
N. DE ROO

In their response to our paper on the problems of using on-farm trials in efforts to scale-out new crop production technologies and practices among smallholder farmers, Wall et al. (2019) focus on our descriptions of on-farm trials in just one of the three case studies of Agricultural Research for Development (AR4D) projects that were presented. They argue we did not understand the projects’ philosophy and that the biases in farmer and site selection we discussed, do not exist in the southern Africa case study.


2019 ◽  
Vol 15 (2) ◽  
pp. 55-68
Author(s):  
András Polgár ◽  
Zoltán Kovács ◽  
Veronika Elekné Fodor ◽  
András Bidló

Abstract Environmental life cycle assessment (LCA) was developed as a tool for sustainable, decision-supporting environmental management. Applying agricultural sector-LCA in order to achieve both internal (comparative) and external (efficiency enhancing) benefits is a priority. Since the life-cycle assessment of products and processes attracts great interest, applying the method in agriculture is relevant. Our study undertakes a comparative environmental life-cycle assessment (LCA) of local arable crop production technologies used for the main cultivated plants: maize, sunflower, lucerne, cereals, and canola (environmental data in the territorial approach calculated on a 1 ha unit and in the quantitative approach calculated on 1 t of produce). We prepared an environmental inventory of the arable crop production technologies, constructed the life-cycle models, and executed the impact assessment. We also compiled an environmental ranking of technologies. In the impact interpretation, we compared the results with the values of short rotation energy plantations in each impact category. We analysed carbon footprints closely. The obtained results help better assess environmental impacts, climate risks, and climate change as they pertain to arable crop production technologies, which advances the selection of appropriate technologies adjusted to environmental sensitivities.


2020 ◽  
Vol 13 (1) ◽  
pp. 41
Author(s):  
Anny Mulyani ◽  
Mamat Haris Suwanda

<p><strong>Abstrak</strong>. Wilayah Nusa Tenggara mempunyai lahan kering beriklim kering seluas 4,9 juta ha dengan curah hujan &lt;2.000 mm/tahun dan bulan kering 5-10 bulan, bersolum tanah dangkal dan berbatu. Sebagian lahan tersebut sudah dimanfaatkan menjadi lahan pertanian terutama jagung, akibatnya produktivitas tanaman jagung rendah dibandingkan potensi genetiknya, yaitu sekitar 2,5 ton/ha di NTT dan 5,3 ton/ha di NTB dibanding dengan potensi genetiknya 9 ton/ha. Sejak tahun 2010-2015, Badan Penelitian dan Pengembangan Pertanian telah mengembangkan inovasi teknologi pengelolaan lahan kering beriklim kering dan berbatu di beberapa kabupaten di NTT dan NTB, meliputi penyediaan sumberdaya air (dam parit, embung, tampung renteng mini, sumur dangkal), pengenalan varietas unggul baru dan budidaya tanaman pangan. Pembelajaran yang diperoleh menunjukkan bahwa penyediaan air menjadi titik ungkit untuk meningkatkan indeks pertanaman dan produktivitas tanaman. Inovasi teknologi yang dibutuhkan petani adalah, mudah diterapkan, biaya murah, dan efisien tenaga kerja mendorong berlanjutnya teknologi tersebut meskipun progam tersebut telah selesai. Pada tahun 2014-2018 telah dilaksanakan kegiatan pertanian konservasi melalui dana hibah barang dan jasa yang dikelola FAO. Prinsip dasar pertanian konservasi terdiri atas 3 pilar, yaitu olah tanah terbatas berupa lubang olah permanen, penutupan permukaan tanah, rotasi/tumpangsari. Lubang tanam tersebut diberi pupuk kandang atau kompos, dan ditanami jagung pada 4 penjuru lubang, dan ditumpangsarikan dengan berbagai kacang-kacangan atau tanaman merambat seperti labu kuning yang berfungsi sebagai penutup tanah dan penghasilan tambahan dari kacang-kacangan berumur pendek. Berdasarkan hasil analisis tanah sebelum dan sesudah implementasi pertanian konservasi menunjukkan bahwa pertanian konservasi dapat meningkatkan kesuburan tanah, retensi air dan meningkatkan produksi tanaman jagung.</p><p> </p><p><strong>Abstract</strong>. The Nusa Tenggara region has upland area with dry climate of 4.9 million ha, less than 2,000 mm annual rainfall, 5-10 dry months, shallow and rocky soils. Some of the land has been used for agricultural development, especially corn, resulting in low corn productivity of around 2.5 tons / ha in NTT and 5.3 tons / ha in NTB as compared to it genetic potential 9 tons /ha. Since 2010-2015, Indonesian Agency of Agricultural Research and Development has developed innovation of soil management technology for upland with dry climates and and rocky soils in several districts in NTT and NTB. The innovation includes the provision of water resources (dam trenches, reservoirs, mini catchments, and shallow wells), introduction of new high yielding varieties and cultivation crops. The lessons learned show that water supply is the initial point to increase cropping index and crop productivity. Technological innovations needed by farmers are easy to implement, low cost, and labor efficient thereby encourage the continuation of the technology even though the program has been completed. In 2014-2018, conservation agriculture activities were carried out through grants of goods and services managed by Food Agriculture Organization (FAO). The basic principle of conservation agriculture consists of 3 pillars, namely limited tillage in the form of permanent planting holes, cover crops, rotation / intercropping. The planting hole is given manure or compost, and planted with corn in 4 corners, and intercropped with various nuts or vines such as pumpkin that serves as a soil cover and additional income from short-lived beans. Based on the results of soil analysis before and after the implementation of conservation agriculture, it shows that conservation agriculture can increase soil fertility, water retention and increase corn crop production.</p>


Author(s):  
Md. Abdul Awal

The landmasses of the coastal areas of Bangladesh still remains under-utilized, thus cropping intensity is much less than the national average. Most areas remain fallow during dry (rabi) season from December to May due to presence of higher concentration of salts in soil and water, and scarcity of suitable irrigation water. Available adaptation options or technologies are not capable to solve these problems at all. Nevertheless, the areas receive a lot of water from monsoon rain, most of that rainwater is drain-out as surface runoff. The present study results suggest that the use of harvested rainwater and conservation agriculture either in combination or alone could mitigate the problem for bringing huge areas under crop cultivation. The public social safety net programmes such as cash-for-work, food-for-work etc. can be deployed for excavating or re-excavating the abandoned coastal ponds, ditches or canals for storing rainwater. Salt-, drought- and/or heat-tolerant crop varieties with short life span can also be cultivated to get the better results. Early plantation or growing crops with early-maturing varieties can ensure safer harvest in ahead of stress arrives. The avenues have immense potential as climate-smart practices for growing crops preferably non-rice crops during dry season in vast fallow land that will not only ensure food security for coastal people but could turn the entire southern Bangladesh as a food surplus zone. The findings refer the broad recommendation, therefore, specific research works based on the locations and resources available are necessary.


2020 ◽  
Vol 41 (01) ◽  
Author(s):  
Amare Aleminew ◽  
Merkuz Abera

Climate change is a recent challenge on crop production and productivity in the world. The objective of this paper is to review the major effects of climate change on the production and productivity of wheat in the high lands of Ethiopia. Effects of climate change on wheat would be mainly through changes in [CO2], temperature, rainfall, length of growing period, actual growth rate and increased evapo-transpiration, which may lead to reduce yield or complete crop failure. Moreover, flower fertilization and grain set are highly sensitive to heat stress during mid-anthesis. In C3 crops like wheat, the elevated CO2 level is expected to increase productivity as a result of higher CO2 diffusion through stomata leading to a higher photosynthesis rate. But, elevated [CO2] may have negative effects on the grain-quality of wheat in terms of protein, lipids, number of mitochondria and nitrogen contents. Unlike CO2, elevated temperature affects crop production negatively by increasing rate of respiration; hastening plant growth and development; increasing photorespiration of wheat, reducing photosynthetic efficiency due to O2 interrupts the photosynthetic path way instead of CO2, increasing rate of water loss by increasing evapo-transpiration and decreasing nutrient use-efficiency through increased rate of decomposition and mineralization. As a result, wheat area is forecast to be displaced by other crop types. In order to tackle this issue, major mitigation and adaptation measures for example promoting area closures and conservation agriculture-based (CA), agroforestry practices, efficient use of energy sources, etc. should be practiced and given special attention by the communities as well as the government to solve the effects of climate change on wheat production and productivity in the country.


Author(s):  
Kausar Ahmed Majumder ◽  
Jasim Uddin Ahmed ◽  
Kanij Fatema

The study was conducted to assess comparative advantages of the productivity and profitability for conservation agriculture practice in Chattogram. A total of 120 farmers (60 farmers adopting conservation agriculture (CA) and 60 farmers non-adopting CA) from two districts (Feni and Noakhali) of Chattogram division were selected. Descriptive statistics like sum, averages, percentages, and ratios were calculated to evaluate the nature and extent of use of advanced machinery and fertilizer data. Farmers were categorized on the basis of farm size (small, medium and large) and selected by multistage stratified sampling. Crop productivity was measured using the Enyedi’s crop productivity index. The profitability of crop production was measured in terms of gross return, gross margin, net margin and benefit-cost ratio (BCR). The crop productivity of rice, mustard and soybean were increased by 0.18, 26, and 0.19 percent, respectively in respect to non-practicing conservation agriculture.  BCR increased by 42.43%, 40.78% and 36.61% for rice, mustard and soybean cultivation respectively with respect to the entire region for adopting conservation agriculture practice. Ultimately, the farmers who adopted conservation agriculture were gaining more profit than the farmer whose were not adopting the conservation agriculture practice. As Bangladesh is a labour intensive country and the availability of capital is short. The expense of purchasing the machines cannot be afforded by the farmers. In Feni and Noakhali are located in the coastal region. Climatic problem is another problem of the people of this area. The uses of advanced machineries are still limited. The quality of soil is decreasing day by day because of excessive use of synthetic fertilizers.


Sign in / Sign up

Export Citation Format

Share Document