scholarly journals Selecting Pichia pastoris recombinant clones for higher secretion of human insulin precursor into the culture supernatant

Author(s):  
D Nurdiani ◽  
Hariyatun ◽  
N Utami ◽  
E Wahyu Putro ◽  
W Kusharyoto
2018 ◽  
Vol 23 (2) ◽  
pp. 102 ◽  
Author(s):  
Dini Nurdiani ◽  
Hariyatun Hariyatun ◽  
Wien Kusharyoto

In the past ten years, diabetes prevalence has increased rapidly in low- and middle-income countries due to lifestyle changes. This increased number of diabetic patients leads to the escalation of recombinant insulin demand, which is creating a large global insulin market. Pichia pastoris has appeared as an alternative host to produce recombinant proteins. It has excellent qualifications as an expression host for large-scale production of recombinant proteins for therapeutic use. In this study, we attempted to express the insulin precursor (IP) in P. pastoris. We used a synthetic IP-encoding gene constructed in frame with the truncated α-factor secretory signal and a short C-peptide (DGK) linked A- and B-chain of human insulin in a pD902 expression vector. Several zeocin resistant clones were successfully obtained and verified with PCR using AOX1 specific primers for the integration of the expression cassette into the P. pastoris genome and for the identification of Mut phenotypes. The secretion of IP by the Pichia pastoris clone in the culture supernatant was confirmed using SDS-PAGE, where a single band of the secreted IP with a molecular mass above 6.5 kDa was found.


2021 ◽  
Vol 948 (1) ◽  
pp. 012084
Author(s):  
F C Sekaringtyas ◽  
D Hardianto ◽  
N Karimah ◽  
V Nida ◽  
A Zahra

Abstract The case of diabetes increases significantly and has been projected to reach 592 million people in 2035. Consequently, the necessity of insulin will rise manifold and an efficient production system for insulin production is required to meet the market demands. The human insulin precursors that enzymatically converted to human insulin can be produced using Escherichia coli, Saccharomyces cerevisiae, or Pichia pastoris. In this study, Pichia pastoris is used for production human insulin precursor because the resulting recombinant protein can be folded accordingly and secreted to the external environment of the cell that simplifies the purification process. The study was initiated with the insertion of a synthetic gene of human insulin precursor into the pPICZaA to create recombinant pPICZaA-IP plasmid. The recombinant plasmid was transformed into Escherichia coli Top10 which then isolated and digested by the SacI enzyme. The linearize pPICZaA-IP plasmid was transfected into Pichia pastoris X-33 by electroporator. The result of transformation process, a total of 20 colonies of P pastoris X-33 were selected and inoculated in YPD agar medium containing Zeocin. The two colonies of P pastoris were characterized by PCR and sequencing showed that the recombinant pPICZaA-IP plasmid was successfully integrated into selected colonies of P pastoris.


Author(s):  
Rafid A. Abdulkareem

The main goal of the current study was cloning and expression of the human insulin gene in Pichia pastoris expression system, using genetic engineering techniques and its treatment application. Total RNA was purified from fresh normal human pancreatic tissue. RNA of good quality was chosen to obtain a first single strand cDNA. Human preproinsulin gene was amplified from cDNA strand, by using two sets of specific primers contain EcoR1 and Notl restriction sites. The amplified preproinsulin gene fragment was double digested with EcoRI and Not 1 restriction enzymes, then inserted into pPIC9K expression vector. The new pPIC9K-hpi constructive expression vector was transformed by the heat-shock method into the E.coli DH5α competent cells. pPic9k –hpi, which was propagated in the positive transformant E. coli cells, was isolated from cells and then linearised by restriction enzyme SalI, then transformed into Pichia pastoris GS115 using electroporation method. Genomic DNA of His+ transformants cell was extracted and used as a template for PCR analysis. The results showed, that the pPic9k – hpi was successfully integrated into the P. pastoris genome, for selected His+ transformants clones on the anticipated band at 330 bp, which is corresponded to the theoretical molecular size of the human insulin gene. To follow the insulin expression in transformans, Tricine–SDS gel electrophoresis and Western blot analysis were conducted. The results showed a successful expression of recombinant protein was detected by the presence of a single major band with about (5.8 KDa) on the gel. These bands correspond well with the size of human insulin with the theoretical molecular weight (5.8 KDa).


2000 ◽  
Vol 64 (5) ◽  
pp. 1079-1081 ◽  
Author(s):  
Mamoru KOH ◽  
Hiroshi HANAGATA ◽  
Shogo EBISU ◽  
Kazuyuki MORIHARA ◽  
Hiroaki TAKAGI

Sign in / Sign up

Export Citation Format

Share Document