scholarly journals Simulation and experimental study on the airflow distribution in rectangular cross-section tunnels

Author(s):  
Cui Ding ◽  
Yanhua Meng
2021 ◽  
Vol 227 ◽  
pp. 108878
Author(s):  
Jie Hong ◽  
Kai Wei ◽  
Zhonghui Shen ◽  
Bo Xu ◽  
Shunquan Qin

Author(s):  
Ф.В. Роньшин ◽  
Ю.А. Дементьев ◽  
Е.А. Чиннов

An experimental study of drop formation in narrow horizontal microchannels with rectangular cross section and a height from 50 to 150 micrometers was performed. It is shown that in these channels there is a new flow regime when drops moving along the microchannel, which are vertical liquid bridges. Three mechanisms of the formation of such drops are distinguished: the formation directly near the liquid nozzle, the separation of droplets from the liquid moving along the side walls of the channel, and due to the destruction of strongly deformed drops and horizontal liquid bridges. It was found that the deformation of drops increases with an increase in the Weber number. It is shown that when the first critical value of the Weber number is reached, the drops begin to deform, and when the second Weber number is reached, they break.


2014 ◽  
Vol 908 ◽  
pp. 287-290
Author(s):  
Shi Chuang Zhuo ◽  
Qiang Zhang ◽  
Shun Cai Li

By means of resistance strain gauge and multifunctional test bench of materials mechanics, the relation curve between the axial compressive forces of the two-ends hinged column with a rectangular cross-section and total bridge strain was obtained by the resistance strain measurement method, accordingly, by the horizontal asymptote of this relation curve the critical load of compression column was obtained. The study indicates that the critical load obtained respectively by the resistance strain measurement method and Euler formula theory fits very well, and the research results verified the reliability of the experimental method.


Author(s):  
Fethi Aloui ◽  
Amal Elawady

Abstract In this work, we present an experimental and numerical study in a horizontal duct with a rectangular cross-section (300 × 30mm2). In the middle of this cross-section, a rectangular obstacle (20 × 10mm2) then a squared obstacle (10 × 10mm2) were placed in order to study experimentally and numerically the vortex shedding and their interactions in the flow. Upstream obstacles, the studied flows are laminar. In our experimental study, the PIV technique was used in order to obtain instantaneous velocity fields downstream the used obstacles. From these measurement results, a post-processing was used (especially the Γ2 criterion) in order to well extract instantaneous vortices contained in the flow downstream obstacles. In parallel with this experimental study, a 2D numerical simulation was achieved in order to be validated by the experimental results. Other complementary PIV measurements were carried out in the duct top by visualizing the flow downstream obstacles in order to study the 3D effects of the flow.


Sign in / Sign up

Export Citation Format

Share Document