Experimental study on the dynamic behavior of TiNi cantilever beams with rectangular cross-section under transversal impact

2010 ◽  
Vol 37 (7) ◽  
pp. 813-827 ◽  
Author(s):  
Xinghua Zhang ◽  
Zhiping Tang
2021 ◽  
Vol 227 ◽  
pp. 108878
Author(s):  
Jie Hong ◽  
Kai Wei ◽  
Zhonghui Shen ◽  
Bo Xu ◽  
Shunquan Qin

1956 ◽  
Vol 23 (1) ◽  
pp. 103-108
Author(s):  
E. T. Cranch ◽  
Alfred A. Adler

Abstract Using simple beam theory, solutions are given for the vibration of beams having rectangular cross section with (a) linear depth and any power width variation, (b) quadratic depth and any power width variation, (c) cubic depth and any power width variation, and (d) constant depth and exponential width variation. Beams of elliptical and circular cross section are also investigated. Several cases of cantilever beams are given in detail. The vibration of compound beams is investigated. Several cases of free double wedges with various width variations are discussed.


Author(s):  
Ф.В. Роньшин ◽  
Ю.А. Дементьев ◽  
Е.А. Чиннов

An experimental study of drop formation in narrow horizontal microchannels with rectangular cross section and a height from 50 to 150 micrometers was performed. It is shown that in these channels there is a new flow regime when drops moving along the microchannel, which are vertical liquid bridges. Three mechanisms of the formation of such drops are distinguished: the formation directly near the liquid nozzle, the separation of droplets from the liquid moving along the side walls of the channel, and due to the destruction of strongly deformed drops and horizontal liquid bridges. It was found that the deformation of drops increases with an increase in the Weber number. It is shown that when the first critical value of the Weber number is reached, the drops begin to deform, and when the second Weber number is reached, they break.


1971 ◽  
Vol 13 (1) ◽  
pp. 51-59 ◽  
Author(s):  
B. Dawson ◽  
N. G. Ghosh ◽  
W. Carnegie

This paper is concerned with the vibrational characteristics of pre-twisted cantilever beams of uniform rectangular cross-section allowing for shear deformation and rotary inertia. A method of solution of the differential equations of motion allowing for shear deformation and rotary inertia is presented which is an extension of the method introduced by Dawson (1)§ for the solution of the differential equations of motion of pre-twisted beams neglecting shear and rotary inertia effects. The natural frequencies for the first five modes of vibration are obtained for beams of various breadth to depth ratios and lengths ranging from 3 to 20 in and pre-twist angle in the range 0–90°. The results are compared with those obtained by an alternative method (2), where available, and also to experimental results.


2014 ◽  
Vol 908 ◽  
pp. 287-290
Author(s):  
Shi Chuang Zhuo ◽  
Qiang Zhang ◽  
Shun Cai Li

By means of resistance strain gauge and multifunctional test bench of materials mechanics, the relation curve between the axial compressive forces of the two-ends hinged column with a rectangular cross-section and total bridge strain was obtained by the resistance strain measurement method, accordingly, by the horizontal asymptote of this relation curve the critical load of compression column was obtained. The study indicates that the critical load obtained respectively by the resistance strain measurement method and Euler formula theory fits very well, and the research results verified the reliability of the experimental method.


1976 ◽  
Vol 43 (1) ◽  
pp. 75-80 ◽  
Author(s):  
S. Nair ◽  
E. Reissner

We analyze the effect of anisotropy on beam flexibility by the derivation of upper and lower bounds, through use of the principles of minimum potential and complementary energy, for the load-deflection ratios of narrow rectangular cross-section cantilever beams. The basic assumption is a class of stress-strain relations of such nature that normal strains are caused not only by normal stresses but also by shearing stresses, and shearing strains are caused not only by shearing stresses but also by normal stresses.


Sign in / Sign up

Export Citation Format

Share Document