scholarly journals Simulation and contrast study on flywheel energy storage control strategy for dynamic stabilization of power fluctuation in power grid

Author(s):  
Feng Zhou ◽  
Mingliang Liu ◽  
Peng Jiang ◽  
Mingyu Xu ◽  
Wenbo Hao ◽  
...  
2014 ◽  
Vol 1008-1009 ◽  
pp. 1466-1469
Author(s):  
Gui Xing Wang ◽  
Zhe Heng Zhou ◽  
Shuai Zheng ◽  
Qing Xie ◽  
Chao Ping Rao ◽  
...  

In this research, a storage system, suitable for the power system of construction, is proposed and optimized. The storage system mainly consists of control system, converter, flywheel and motor. This system can release the pressure of the power grid during the on-peak period and supply the consumers with cheap energy. This research is going to analyze the characters of the system and then adjust its structure to the architecture.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 642 ◽  
Author(s):  
Tiezhou Wu ◽  
Xiao Shi ◽  
Li Liao ◽  
Chuanjian Zhou ◽  
Hang Zhou ◽  
...  

In view of optimizing the configuration of each unit’s capacity for energy storage in the microgrid system, in order to ensure that the planned energy storage capacity can meet the reasonable operation of the microgrid’s control strategy, the power fluctuations during the grid-connected operation of the microgrid are considered in the planning and The economic benefit of hybrid energy storage is quantified. A multi-objective function aiming at minimizing the power fluctuation on the DC bus in the microgrid and optimizing the capacity ratio of each energy storage system in the hybrid energy storage system (HESS) is established. The improved particle swarm algorithm (PSO) is used to solve the objective function, and the solution is applied to the microgrid experimental platform. By comparing the power fluctuations of the battery and the supercapacitor in the HESS, the power distribution is directly reflected. Comparing with the traditional mixed energy storage control strategy, it shows that the optimized hybrid energy storage control strategy can save 4.3% of the cost compared with the traditional hybrid energy storage control strategy, and the performance of the power fluctuation of the renewable energy is also improved. It proves that the proposed capacity configuration of the HESS has certain theoretical significance and practical application value.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1195 ◽  
Author(s):  
Mei Wu ◽  
Yu-Qing Bao ◽  
Gang Chen ◽  
Jinlong Zhang ◽  
Beibei Wang ◽  
...  

The stability problem of the power system becomes increasingly important for the penetration of renewable energy resources (RESs). The inclusion of electric vehicles (EVs) in a power system can not only promote the consumption of RESs, but also provide energy for the power grid if necessary. As a mobile energy storage unit (MESU), EVs should pay more attention to the service life of their batteries during operation. A hierarchical distributed control strategy was proposed in this paper for mobile energy storage clusters (MESCs) considering the life loss of each EV’s battery. This strategy was divided into a two-layer control structure. Firstly, numerous EVs were divided into different clusters according to their regional relationships. The lower layer adopted a distributed collaborative control approach for allocating energy among EVs in the cluster. Under this condition, an aggregate EVs response model was established and the characteristic of the MESC was analyzed. Secondly, the upper layer applied the multi-agent consensus algorithm to achieve the optimal allocation among different clusters. Therefore, the control strategy realized the two-way communication of energy between EVs and the power grid, and ensured the optimal economical dispatch for the mobile energy storage system (MESS). Finally, the simulation of testing examples verified the effectiveness of the proposed strategy.


2019 ◽  
Vol 2019 (16) ◽  
pp. 3341-3344
Author(s):  
Chi Zhang ◽  
Jie Zeng ◽  
Yifan Hu ◽  
Jinling Meng ◽  
Wei Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document